Proof of Riemann Paper (1859)

Proof of Riemann Paper (1859)

Authors

  • Vedatroyee Ghosh University of Engineering and Management, Gurukul, Sikar Road near Udaipuria Mod, Jaipur, Rajasthan 303807, India
  • Akash Sharma University of Engineering and Management, Gurukul, Sikar Road near Udaipuria Mod, Jaipur, Rajasthan 303807, India
  • Viraj Bansal University of Engineering and Management, Gurukul, Sikar Road near Udaipuria Mod, Jaipur, Rajasthan 303807, India

DOI:

https://doi.org/10.53469/wjimt.2023.06(04).09

Keywords:

Riemann, zeta function

Abstract

In 1859 Riemann defined the zeta function . From Gamma function he derived the zeta function with Gamma function . and are the two different functions. It is false that replaces . After him later mathematicians put forward Riemann hypothesis(RH) which is false. The Jiang function can replace RH.

References

García, J.I., Sepúlveda, S. and Noriega-Hoces, L. (2010) Beneficial Effect of Reduced Oxygen Concentration with Transfer of Blastocysts in IVF Patients Older than 40 Years Old. Health, 2, 1010-1017.

B. Riemann, Uber die Anzahl der Primzahlen under einer gegebener Grösse, Monatsber Akad. Berlin, 671-680 (1859).

P. Bormein, S. Choi, B. Rooney, The Riemann hypothesis, pp28-30, Springer-Verlag, 2007.

Chun-Xuan Jiang, Disproofs of Riemann hypothesis, Algebras Groups and Geometries 22, 123-136 (2005). http://www.i-b-r.org/docs/JiangRiemann.pdf.

Tribikram Pati, The Riemann hypothesis, arxiv: math/0703367v2, 19 Mar. 2007.

Laurent Schadeck, Private communication. Nov. 5. 2007.

Laurent Schadeck, Remarques sur quelques tentatives de demonstration Originales de l’Hypothèse de Riemann et sur la possiblilité De les prolonger vers une théorie des nombres premiers consistante, unpublished, 2007.

Chun-Xuan Jiang, Foundations of Santilli’s isonumber theory with applications to new cryptograms, Fermat’s theorem and Goldbach’s conjecture, Inter. Acad. Press, 2002. MR2004c: 11001, http://www.i-b-r.org/Jiang. pdf.

Chun-xuan Jiang, The simplest proofs of both arbitrarily long arithmetic progressions of primes, Preprint (2006).

B. Kra, The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. Am. Math. Soc. 43, 3-23(2006).

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions. To appear, Ann. Math.

T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes. In proceedings of the international congress of mathematicians (Madrid. 2006). Europ. Math, Soc. Vol.1, 581-609, 2007.

A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math. 141, 443-551 (1995).

Chun-Xuan Jiang, Fermat’s marvelous proofs for Femart’s last theorem, preprint (2007), submit to Ann. Math.

Chun-Xuan Jiang, Prime theorem in Santilli’s isonumber theory (II), Algebras Groups and Geometries 20, 149-170(2003).

D.R. Heath-Brown, Primes represented by . Acta Math. 186, 1-84(2001).

J. Friedlander and H. Iwaniec, The polynomial captures its primes. Ann. Math. 148, 945-1040(1998)

Castro, C. , Granik, A. , & Mahecha, J. . (2001). On susy-qm, fractal strings and steps towards a proof of the riemann hypothesis. Physics.

Zimmer, H. G. . (1971). An elementary proof of the riemann hypothesis for an elliptic curve over a finite field. Pacific Journal of Mathematics, 36(1).

Shi, K. . (2003). A geometric proof of riemann hypothesis. Mathematics.

Eswaran, K. . (2018). A rigorous proof of the riemann hypothesis from first principles.

Huang, S. . (2008). Modeling the creative process of the mind by prime numbers and a simple proof of the riemann hypothesis. Mathematics.

Mackay, R. S. . (2017). Towards a spectral proof of riemann's hypothesis.

Garc, A. , & Doz, S. . (2013). A potential elementary proof of the riemann hypothesis.

Xiang-Hu, M. A. . (2017). Ingenious proof of zeros distribution of the zeta function in riemann hypothesis. Sci-tech Innovation and Productivity.

Botsko, M. W. . (2003). A simple proof of the derivative of the indefinite riemann-complete integral. Real analysis exchange.

Shinya, H. . On the proof of the Riemann Hypothesis and multiplicities of the nontrivial zeros of the Riemann ζ-function.

Destefano, Z. . A RIGOROUS PROOF OF THE ARC LENGTH AND LINE INTEGRAL FORMULA USING THE RIEMANN INTEGRAL.

Ho, M. K. M. . (2014). A condensed proof of the differential grothendieck-riemann-roch theorem. Proceedings of the American Mathematical Society, 142(6).

Anthony, A. M. M. . A SIMPLE PROOF OF THE RIEMANN HYPOTHESIS ?.

Feng, N. , Wang, Y. , & Wu, R. . The Riemann Hypothesis and the possible proof.

Dutt, P. . (1986). A riemann solver based on a global existence proof for the riemann problem.

Oscar García-Prada. (1994). A direct existence proof for the vortex equations over a compact riemann surface. Bulletin of the London Mathematical Society, 26(1), 88-96.

Downloads

Published

2023-08-24
Loading...