Research Progress on the Mechanism of Sivelestat Sodium in Sepsis-Related Organ Dysfunction

Research Progress on the Mechanism of Sivelestat Sodium in Sepsis-Related Organ Dysfunction

Authors

  • Weiquan Chen Department of Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China
  • Lihua Zhou Department of Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia Autonomous Region, China

DOI:

https://doi.org/10.53469/wjimt.2024.07(02).04

Keywords:

Sivelestat, Sepsis, Organ dysfunction syndrome, Neutrophil elastase

Abstract

Sepsis is a life-threatening organ dysfunction caused by the host 's dysfunctional response to infection, which seriously threatens life and health. The pathogenesis of sepsis is very complicated. Neutrophil elastase is closely related to the occurrence and development of sepsis. It promotes the migration of immune cells and induces the release of pro-inflammatory mediators by degrading extracellular matrix, thus causing organ dysfunction. Sivelestat sodium has received continuous attention in recent years due to its specific inhibition of neutrophil elastase and its possible role in sepsis-related organs through multiple pathways. This article reviews the research progress of the mechanism of sivelestat sodium in sepsis-related organ dysfunction.

References

Singer M, Deutschman C S, Seymour C W, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. Jama, 2016, 315(8): 801-810.

Kempker J A, Martin G S. A global accounting of sepsis[J]. The Lancet, 2020, 395(10219): 168-170.

Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nature Reviews Nephrology, 2018, 14(2): 121-137.

van der Poll T, Shankar-Hari M, Wiersinga W J. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464.

Manabe T, Heneka M T. Cerebral dysfunctions caused by sepsis during ageing[J]. Nature Reviews Immunology, 2022, 22(7): 444-458.

Wen X, Xie B, Yuan S, et al. The “Self-Sacrifice” of immunecells in sepsis[J]. Frontiers in Immunology, 2022, 13: 833479.

Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis[J]. Clinical and Translational Medicine, 2023, 13(1): e1170.

Korkmaz B, Horwitz M S, Jenne D E, et al. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases[J]. Pharmacological reviews, 2010, 62(4): 726-759.

Zhang R, Gao X, Hu F, et al. Myocardial protective effect of sivelestat sodium in rat models with sepsis-induced myocarditis[J]. Journal of Thoracic Disease, 2022, 14(10): 4003.

Sekheri M, El Kebir D, Edner N, et al. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation[J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7971-7980.

Rosa B A, Ahmed M, Singh D K, et al. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection[J]. Communications biology, 2021, 4(1): 290.

Adrover J M, Aroca-Crevillén A, Crainiciuc G, et al. Programmed ‘disarming’of the neutrophil proteome reduces the magnitude of inflammation[J]. Nature immunology, 2020, 21(2): 135-144.

Dömer D, Walther T, Möller S, et al. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils[J]. Frontiers in immunology, 2021, 12: 636954.

Alsabani M, Abrams S T, Cheng Z, et al. Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis[J]. British journal of anaesthesia, 2022, 128(2): 283-293.

Sun S, Duan Z, Wang X, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway[J]. Cell Death & Disease, 2021, 12(6): 606.

Kumar S, Gupta E, Kaushik S, et al. Quantification of NETs formation in neutrophil and its correlation with the severity of sepsis and organ dysfunction[J]. Clinica chimica acta, 2019, 495: 606-610.

Owen C A, Campbell M A, Boukedes S S, et al. Cytokines regulate membrane-bound leukocyte elastase on neutrophils: a novel mechanism for effector activity[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 1997, 272(3): L385-L393.

Crocetti L, Quinn M T, Schepetkin I A, et al. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications[J]. Expert opinion on therapeutic patents, 2019, 29(7): 555-578.

Zeng W, Song Y, Wang R, et al. Neutrophil elastase: From mechanisms to therapeutic potential[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 355-366.

Sorokin L. The impact of the extracellular matrix on inflammation[J]. Nature Reviews Immunology, 2010, 10(10): 712-723.

Papayannopoulos V, Metzler K D, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. Journal of cell biology, 2010, 191(3): 677-691.

Oriano M, Amati F, Gramegna A, et al. Protease–antiprotease imbalance in bronchiectasis[J]. International journal of molecular sciences, 2021, 22(11): 5996.

Kawabata K, Hagio T, Matsuoka S. The role of neutrophil elastase in acute lung injury[J]. European journal of pharmacology, 2002, 451(1): 1-10.

Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation[J]. Nature reviews immunology, 2013, 13(3): 159-175.

Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. science, 2004, 303(5663): 1532-1535.

Lood C, Blanco L P, Purmalek M M, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease[J]. Nature medicine, 2016, 22(2): 146-153.

Polverino E, Rosales-Mayor E, Dale G E, et al. The role of neutrophil elastase inhibitors in lung diseases[J]. Chest, 2017, 152(2): 249-262.

Lucas S D, Costa E, Guedes R C, et al. Targeting COPD: advances on low‐molecular‐weight inhibitors of human neutrophil elastase[J]. Medicinal research reviews, 2013, 33(S1): E73-E101.

Feng L, Zhu W, Huang C, et al. Direct interaction of ONO-5046 with human neutrophil elastase through 1H NMR and molecular docking[J]. International journal of biological macromolecules, 2012, 51(3): 196-200.

Stevens T, Ekholm K, Gränse M, et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase[J]. Journal of Pharmacology and Experimental Therapeutics, 2011, 339(1): 313-320.

Delacourt C, Hérigault S, Delclaux C, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor[J]. American journal of respiratory cell and molecular biology, 2002, 26(3): 290-297.

Chillappagari S, Müller C, Mahavadi P, et al. A small molecule neutrophil elastase inhibitor, KRP-109, inhibits cystic fibrosis mucin degradation[J]. Journal of Cystic Fibrosis, 2016, 15(3): 325-331.

Bronze-da-Rocha E, Santos-Silva A. Neutrophil elastase inhibitors and chronic kidney disease[J]. International journal of biological sciences, 2018, 14(10): 1343.

Aikawa N, Kawasaki Y. Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome[J]. Therapeutics and clinical risk management, 2014: 621-629.

Matthay M A, Zemans R L, Zimmerman G A, et al. Acute respiratory distress syndrome[J]. Nature reviews Disease primers, 2019, 5(1): 18.

Okeke E B, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock[J]. Biomaterials, 2020, 238: 119836.

Yuan Q, Jiang Y W, Fang Q H. Improving effect of Sivelestat on lipopolysaccharide‐induced lung injury in rats[J]. Apmis, 2014, 122(9): 810-817.

Lee J M, Yeo C D, Lee H Y, et al. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice[J]. Journal of anesthesia, 2017, 31: 397-404.

Weng J, Liu D, Shi B, et al. Sivelestat sodium alleviated lipopolysaccharide-induced acute lung injury by improving endoplasmic reticulum stress[J]. Gene, 2023, 884: 147702.

Frencken J F, van Smeden M, van de Groep K, et al. Etiology of myocardial injury in critically ill patients with sepsis: a cohort study[J]. Annals of the American Thoracic Society, 2022, 19(5): 773-780.

Fukuta T, Okada H, Takemura G, et al. Neutrophil elastase inhibition ameliorates endotoxin-induced myocardial injury accompanying degradation of cardiac capillary glycocalyx[J]. Shock, 2020, 54(3): 386-393.

Tao J, Zhu W, Li Y, et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2011, 301(4): H1471-H1486.

Zhang R, Gao X, Hu F, et al. Myocardial protective effect of sivelestat sodium in rat models with sepsis-induced myocarditis[J]. Journal of Thoracic Disease, 2022, 14(10): 4003.

Bellomo R, Kellum J A, Ronco C, et al. Acute kidney injury in sepsis[J]. Intensive care medicine, 2017, 43: 816-828.

Scaffidi P, Misteli T, Bianchi M E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J]. Nature, 2002, 418(6894): 191-195.

Heemskerk S, Masereeuw R, Russel F G M, et al. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury[J]. Nature Reviews Nephrology, 2009, 5(11): 629-640.

Li G, Jia J, Ji K, et al. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats[J]. International journal of molecular medicine, 2016, 38(3): 767-775.

Chen D C. Sepsis and intestinal microvascular endothelial dysfunction[J]. Chinese Medical Journal, 2017, 130(10): 1137-1138.

Chen K J, Chen Y L, Ueng S H, et al. Neutrophil elastase inhibitor (MPH-966) improves intestinal mucosal damage and gut microbiota in a mouse model of 5-fluorouracil–induced intestinal mucositis[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111152.

Puleo F, Arvanitakis M, Van Gossum A, et al. Gut Failure in the ICU[C]//Seminars in respiratory and critical care medicine. Thieme, 2011, 32(05): 626-638.

Zhou Q Q, Verne G N. Intestinal hyperpermeability: a gateway to multi-organ failure?[J]. The Journal of clinical investigation, 2018, 128(11): 4764-4766.

Gill N, Ferreira R B R, Antunes L C M, et al. Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization[J]. PloS one, 2012, 7(11): e49646.

Nie H, Xiong Q, Lan G, et al. Sivelestat alleviates atherosclerosis by improving intestinal barrier function and reducing endotoxemia[J]. Frontiers in Pharmacology, 2022, 13: 838688.

Li J H, Oh J, Kienesberger S, et al. Making and breaking leupeptin protease inhibitors in pathogenic Gammaproteobacteria[J]. Angewandte Chemie International Edition, 2020, 59(41): 17872-17880.

Sun Y, Ding X, Cui Y, et al. Positive effects of neutrophil elastase inhibitor (Sivelestat) on gut microbiome and metabolite profiles of septic rats[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 818391.

Downloads

Published

2024-03-27
Loading...