DOI: 10.53469/wiimt.2025.08(11).07

AI-Enabled Medical Education: Current Insights and Future Prospects

Hua Zhang, Dongxin Zhao

College of Traditional Chinese Medicine, Guangzhou Huali Science and Technology Vocational College, Guangzhou 511325, Guangdong, China

Abstract: The rapid advancement of artificial intelligence (AI) is profoundly reshaping the landscape of medical education. Based on a review of recent research literature in the field of medical education, this paper systematically examines the current status, challenges, and future prospects of AI-enabled medical education. Currently, the application of AI in medical education has transitioned from conceptual exploration to widespread practice, primarily manifested in constructing personalized learning pathways, creating virtual simulation training environments, empowering intelligent teaching assistants, driving the reform of teaching evaluation, and facilitating the transformation of teachers' roles. These applications span numerous disciplines, including nursing, pharmacy, basic medicine, clinical medicine, and traditional Chinese medicine. However, its development also faces multiple challenges, including algorithmic opacity and data barriers, insufficient AI literacy among teachers and students, ethical and academic integrity risks, and obstacles to the deep integration of technology and education. Looking ahead, medical education will evolve towards a more personalized, intelligent, collaborative, and virtual-real integrated future. Constructing a new human-machine collaborative educational ecology, improving ethical norms and evaluation systems, and promoting the creative reconstruction of teachers' roles are key pathways to ensure that AI technology truly empowers medical education and cultivates outstanding medical talents.

Keywords: Artificial Intelligence; Medical Education; Personalized Learning; Future Prospects.

1. INTRODUCTION

With the breakthrough progress of artificial intelligence technologies represented by big data, deep learning, and natural language processing, their applications have penetrated into all fields of society. As a core link in cultivating future medical and health talents, medical education is undergoing profound changes driven by AI technologies. Although the traditional medical teaching model has accumulated rich experience in inheriting knowledge systems, it has limitations in meeting students' personalized learning needs, providing high-simulation clinical practice environments, and achieving refined management and evaluation of the teaching process. The introduction of AI technologies has offered new possibilities for addressing these pain points. In recent years, scholars at home and abroad have conducted extensive explorations and practices on the application of AI in medical education. From anatomy and pharmacology in basic medicine to obstetrics and gynecology and stomatology in clinical medicine, and even traditional Chinese medicine with its unique theoretical system, the empowering role of AI can be seen everywhere. This paper aims to integrate recent relevant research literature, systematically analyze the current application status of AI-enabled medical education, examine the core challenges it faces, and look forward to its future development prospects, so as to provide theoretical reference and practical guidance for promoting the in-depth integration of AI and medical education.

2. MULTI-DIMENSIONAL APPLICATION STATUS OF AI-ENABLED MEDICAL EDUCATION

The application of AI technologies in medical education has demonstrated diverse and in-depth characteristics, and its empowering effects are reflected in multiple dimensions such as teaching, learning, evaluation, and management.

2.1 Constructing Personalized and Adaptive Learning Pathways

AI-based learning analytics technology can track students' learning behaviors, knowledge mastery, and learning styles, thereby recommending customized learning resources and pathways for them. For instance, in the blended teaching model, AI can dynamically analyze students' learning data on online course platforms, identify their weak knowledge points, and intelligently push relevant explanatory videos, literatures, or practice questions for intensive learning [1,2]. In pharmacology teaching, AI can construct personalized knowledge graphs according to students' learning progress and comprehension levels, realizing precise resource delivery and teaching intervention

[2]. For medical students, large language models like ChatGPT can serve as "tireless" personalized tutors, answering questions at any time, providing knowledge expansion, assisting in medical English learning and medical computer programming, which meet the differentiated needs of students with different professional backgrounds such as those majoring in basic medicine, clinical pharmacy, and health law [3].

2.2 Creating High-Simulation and Immersive Training Environments

Virtual Reality (VR), Augmented Reality (AR), and AI-based virtual simulation technologies have provided a safe, repeatable, and low-cost high-simulation practice platform for medical education. This is particularly crucial in disciplines requiring high practical operational capabilities, such as anatomy, surgery, and nursing.

2.2.1 Anatomy Teaching

Traditional cadaver dissection teaching is confronted with challenges such as scarce resources and difficult preservation. AI-driven 3D interactive anatomical models and virtual simulation anatomy platforms allow students to conduct unlimited dissection exercises, observe human structures from any angle, and engage in interactive Q&A through generative AI to deepen their understanding [12].

2.2.2 Clinical Skills Training

In fields like obstetrics and gynecology [15], stomatology [7], and nursing [1], the combination of AI with VR/AR can simulate various clinical scenarios and cases. Students can carry out training in inquiry, examination, diagnosis, and operation in a virtual environment. The system can provide real-time feedback and operational evaluation, which greatly improves their clinical thinking and practical abilities while reducing operational risks in the real medical setting.

2.2.3 Traditional Chinese Medicine Practice Teaching

To address the dilemma in traditional Chinese medicine teaching where "knowledge is clear in the mind but hard to express through finger manipulation", an information-based practical teaching system built with AI, VR, and big data technologies can simulate characteristic skill training environments such as pulse diagnosis and tongue diagnosis. This helps students better understand and master the abstract theories and diagnostic methods of traditional Chinese medicine [13].

2.3 Empowering Intelligent Teaching Assistants and Resource Generation

Generative artificial intelligence, especially large language models like ChatGPT, is becoming a powerful auxiliary tool for teachers and students.

2.3.1 Assisting Teachers

Teachers can use AI for targeted lesson preparation, generating teaching cases, exercises, and test papers [3,15]. AI can assist in grading objective assignments and even some subjective ones, freeing up teachers' time and energy so that they can focus more on teaching design and teacher-student interaction [3,11].

2.3.2 Assisting Students

AI can act as an intelligent learning partner to help students sort out knowledge frameworks, summarize key learning points, and conduct literature translation and polishing [3]. In the "Medical English Terminology" course at Capital Medical University, a specially developed AI educational agent provides personalized feedback and expands medical contextual resources, which has effectively stimulated students' learning motivation [11].

2.3.3 Reconstructing Course Content

AI can assist teachers in reconstructing and digitizing traditional course content. For example, based on the DIKWP (Data-Information-Knowledge-Wisdom-Purpose) model, non-destructive semantic connection between traditional Chinese and Western medicine can be achieved. This transforms the rich "information" and "semantic" systems of traditional Chinese medicine into computable and teachable forms, laying a foundation for constructing

an active medical education model [6].

2.4 Driving the Reform and Optimization of Teaching Evaluation Mechanisms

The traditional single summative evaluation is shifting towards a diversified and process-oriented evaluation based on AI. AI systems can record and analyze students' performance throughout the learning process, including online learning duration, interaction frequency, test scores, and virtual operation accuracy, and generate comprehensive learning evaluation reports [1,9]. This formative evaluation can more truly reflect students' learning status and ability development. In the course of Infant Nutrition and Feeding, AI technology has been applied to innovate the evaluation mechanism, achieving more scientific and objective skill assessment through data analysis of students' practical operations [8]. Meanwhile, AI also facilitates data analysis of teachers' teaching processes, realizing two-way evaluation of "teaching" and "learning" and providing data support for teaching improvement [13].

2.5 Promoting the Transformation and Reconstruction of Teachers' Roles

The introduction of AI is not intended to replace teachers but to promote the transformation of teachers' roles from traditional "knowledge imparters" to "learning guides, curriculum designers, human-machine collaboration instructors, and psychological counselors" [7]. Under the AI-assisted teaching model, teachers need to be freed from repetitive tasks and assume more responsibilities such as designing learning experiences, organizing higher-order thinking activities, cultivating students' critical thinking and humanistic care spirit, and guiding students to correctly use AI in human-machine collaboration [7,14]. This places higher requirements on teachers' AI literacy, requiring them to continuously learn new technologies and concepts to achieve the creative reconstruction of their own roles.

3. CORE CHALLENGES FACED BY AI-ENABLED MEDICAL EDUCATION

Despite its broad prospects, the in-depth integration of AI in medical education still confronts a series of severe challenges.

3.1 Technical Bottlenecks and Data Barriers

Current AI technologies themselves have inherent limitations. Firstly, many AI algorithms, especially deep learning models, possess the characteristic of being a "black box", with opaque decision-making processes. This may trigger a crisis of trust in medical education that demands high accuracy and interpretability [5]. Secondly, the quality and standardization of medical education data are insufficient, and there are data sharing barriers across institutions and regions. These factors restrict the training and application of large-scale, high-quality AI models [5]. In addition, the access restrictions and technical costs of AI systems may become obstacles to the application in some institutions, especially those with relatively scarce resources [3].

3.2 Urgent Need to Improve Teachers' and Students' AI Literacy

AI literacy has become one of the essential core competencies for medical teachers and students in the digital age. However, a considerable proportion of current teachers and students have a superficial understanding of AI technologies and lack sufficient application skills. Research on the development of AI literacy assessment tools for nursing students shows that the overall AI literacy level of nursing students is relatively low, with problems such as low acceptance and lack of training in ethics and human-machine interaction skills [4]. Among teachers, some hold extreme attitudes such as outdated teaching concepts, reluctance to accept AI technologies, or excessive reliance on them, which hinders the effective integration of AI and teaching [14]. How to systematically cultivate the AI literacy of teachers and students is an urgent issue to be addressed.

3.3 Ethical, Academic Integrity, and Data Security Risks

The widespread application of AI has brought about new ethical dilemmas.

3.3.1 Academic Integrity

Students may abuse AI tools such as ChatGPT to write assignments and papers on their behalf, leading to academic misconduct [3].

3.3.2 Algorithmic Bias

If the training data contains biases, AI systems may replicate or even amplify these biases, resulting in unfair or incorrect teaching content and evaluation results [4,5].

3.3.3 Data Privacy

A large amount of students' behavioral data and personal information collected during the teaching process are at risk of leakage and abuse, requiring a sound data privacy protection mechanism [4,5].

3.3.4 Weakened Competency Development

Excessive reliance on AI may lead to the decline of students' critical thinking, independent problem-solving abilities, and memory-based knowledge, affecting the cultivation of their core competencies [3,12].

3.4 The Disconnection Between Technology and Education

At present, some AI educational applications remain at the level of technical demonstration and are not closely integrated with the in-depth laws of medical education and the teaching objectives of specific disciplines. There is a phenomenon of applying AI merely for the sake of using it, which fails to truly solve the core problems in teaching and results in the disconnection between technological application and teaching practice with poor effectiveness. How to shift from "technology-driven" to "education-oriented" and promote the in-depth integration of AI with medical education in terms of curriculum systems, teaching models, and evaluation standards is the key to future development [10,13].

4. FUTURE PROSPECTS AND DEVELOPMENT PATHWAYS

Faced with these challenges, the future development of AI-enabled medical education should focus on the following directions:

4.1 Moving Towards a Highly Personalized and Intelligent New Form of Education

With technological advancement, future medical education will more accurately meet the needs of each learner. Personalized learning systems based on knowledge graphs will become more mature, capable of dynamically formulating optimal learning pathways. AI-driven virtual patients and intelligent diagnosis and treatment simulation systems will become more realistic and intelligent, able to simulate complex and rare clinical scenarios and provide high-quality feedback. Cutting-edge technologies such as quantum machine learning are expected to play an important role in frontier fields like pharmaceutical discovery education [5]. The ultimate goal is to build an intelligent medical education environment that teaches students in accordance with their aptitude and provides resources on demand.

4.2 Constructing a New Educational Ecology of Human-Machine Collaboration and Mutual Progress Between Teachers and Students

Future medical education will not see AI replacing teachers, but will form a new ternary collaborative educational ecology of "teachers - AI - students". Teachers will act as designers and leaders of education, using AI to process massive amounts of information, perform repetitive tasks, and provide data insights. AI will serve as a powerful enabling tool to expand the teaching capabilities of teachers and the learning boundaries of students. Students will conduct more creative and in-depth learning with the joint support of teachers and AI. Clarifying the auxiliary position of AI and adhering to the principle of "guiding technology with teaching" are the fundamental principles for building this sound ecology [14].

4.3 Promoting a New Teaching Model of Virtual-Real Integration and Cross-Border Collaboration

The combination of Extended Reality (XR) technology and AI will create a more immersive and interactive "metaverse" medical education space. Within this space, cross-school and cross-border "metaverse teaching and research sections" can be established to support teachers and students in collaborative lesson preparation, virtual

consultations, and academic exchanges. This breaks the constraints of time and space and realizes the global sharing of high-quality educational resources [5,6], which is of great significance for promoting the integration of traditional Chinese and Western medicine and advancing global medical education cooperation.

4.4 Improving Ethical Norms, Evaluation Systems, and Teacher Development Pathways

4.4.1 Improving Ethical and Regulatory Frameworks

There is an urgent need to establish regulatory evaluation standards and ethical use guidelines for AI teaching software, clarify data ownership, privacy protection policies, and algorithm audit requirements, and prevent academic misconduct and algorithmic bias [3,5].

4.4.2 Optimizing the AI Teaching Evaluation System

Develop tools and methods that can scientifically assess the effectiveness of AI teaching. These should not only focus on the mastery of knowledge and skills but also pay attention to the improvement of students' comprehensive qualities such as critical thinking, communication and collaboration, and humanistic care.

4.4.3 Systematically Enhancing Teachers' AI Literacy

It is necessary to help teachers update their educational concepts, master the use of AI tools, understand their potential and limitations in teaching, and smoothly complete their role transformation through continuous training, workshops, and the establishment of community of practice [7,14]. At the same time, teachers should be encouraged to participate in the design and development of AI educational products to make them more in line with actual teaching needs.

5. CONCLUSION

Artificial intelligence is injecting unprecedented vitality into medical education. Its empowering role has expanded from initial exploration to multi-dimensional and in-depth practical applications, significantly improving the efficiency, quality, and accessibility of medical education. However, we must also clearly recognize that technology itself is not a panacea. Its development is accompanied by multiple challenges such as technical bottlenecks, insufficient literacy, ethical risks, and integration obstacles. Looking forward, the success of AI-enabled medical education lies in adhering to the people-oriented education philosophy and promoting the in-depth integration of technological applications with educational laws; in constructing a new human-machine collaborative educational ecology featuring positive interaction; in establishing sound ethical norms and evaluation systems; and more importantly, in stimulating the subjectivity and creativity of teachers to achieve the successful transformation of their roles. Only in this way can we harness this powerful technology of AI, jointly create a new era of more personalized, intelligent, and humanistic medical education, and cultivate more outstanding medical guardians for human society.

REFERENCES

- [1] Sun Qianyu, Li Rui. Innovation Practice of College Nursing Teaching Methods under the Internet Background [J]. Technology Wind, 2025, (29): 79-81.
- [2] Wang Chenjing, Niu Hongmei, Guo Zhong. Application Exploration of Artificial Intelligence in Blended Pharmacology Teaching [J]. Technology Wind, 2025, (29): 131-134.
- [3] Zhu Congmin, Liu Honglei, Zhou Zhen, Huang Jun, Chen Hui. Application and Reflection of ChatGPT in Medical Students' Course Teaching [J]. Beijing Biomedical Engineering, 2025, 44(05): 511-517.
- [4] Lan Xuefen, Zheng Simin, Zhu Qingqing, Lu Shunfei, Li Min, Zhou Ying. Research on Artificial Intelligence Literacy Assessment Tools and Training Strategies for Nursing Students [J]. Military Nursing, 2025, 42(10):
- [5] Zhang Xuanling, Zhou Ying. Innovative Application and Development Trend of Artificial Intelligence in Pharmaceutical Education [J]. Chinese Remedies & Clinics, 2025, 25(19): 1251-1255.
- Duan Yucong, Gu Haichao, Wen Weibo, Chen Qinghua, Huang Shuuaishuai. Research on TCM-WM Semantic Integration and Active Medical Strategy Based on DIKWP Model [J]. Journal of Yunnan University of Traditional Chinese Medicine, 2025, 48(05): 1-13.

- [7] Huang Chao, Shi Jia, Pan Peiyue, Yu Le, Tang Tian. Role Reconstruction of Stomatology Teachers in the Age of Artificial Intelligence [J]. International Journal of Stomatology,
- [8] Wu Linguo, Li Wenqian. Practical Exploration of Integrating Artificial Intelligence Technology into the Vocational College Course 'Infant Nutrition and Feeding' [J]. Information and Computer, 2025, 37(20): 162-165.
- [9] Li Jierong, Pan Junxi, Shan Bin, Li Xinyue, Huang Meijia, Zhang Hongjuan. Transformation of Laboratory Medicine Education Mode Driven by Artificial Intelligence [J]. Health Vocational Education, 2025, 43(20): 1-5.
- [10] Xin Ying, Dong Chao, Li Hui, Li Yanru, Kan Mujie, Yu Lei, Yang Wei, Wang Fang. Research on AI-Enabled Teaching in Biomedical Science Majors [J]. International Journal of Geriatrics,
- [11] Liu Siyu, Xie Chunhui, Tao Xin, Chen Xinyi, Na Dalin. Construction and Application of Educational Agents Based on Artificial Intelligence—Taking the Construction of the "Medical English Terminology" Agent at Capital Medical University as an Example [J]. China Medical Education Technology,
- [12] Zeng Wenhong, Wang Lihua, Pan Rongbin, Zhao Zhidong, Tu Si. Current Status and Future Challenges of Anatomy Teaching Driven by Artificial Intelligence [J]. Basic Medical Education, 2025, (10): 968-974.
- [13] Zhang Jingzhi, Lin Facai. Construction of Traditional Chinese Medicine Practical Teaching System under the Background of Educational Informatization [J]. Shanxi Journal of Traditional Chinese Medicine,
- [14] Liao Lingmei, Liu Zhou, Luo Shu, Tang Lingling, Shen Jie. Research on the Path of AI Technology Empowering the Teaching of Basic Theory of Traditional Chinese Medicine [J]. Journal of Nanjing University of Traditional Chinese Medicine (Social Science Edition), 2025, 26(02): 138-142.
- [15] Wang Huifang, Zhang Hanquan, Chen Li, Lyu Hongsheng. Application Research of Artificial Intelligence Technology in the Teaching of Obstetrics and Gynecology in Colleges and Universities [J]. Western China Quality Education, 2024, 10(20): 150-154.

Author Profile

Hua Zhang female, The Han nationality, native of Changzhou, Jiangsu, Master's degree, Attending Physician, Research direction: Holistic Health.

Dongxin Zhao female, The Han nationality, native of Songyuan, Jilin, Master's degree, Attending Physician. Research direction: Study of Traditional Chinese Medicine theoretical systems from the perspective of cognitive science.