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Abstract: Aiming at the problems of low efficiency and insufficient conflict resolution ability existing in distributed
trajectory planning in multi-UAV cooperative tasks, this paper systematically analyzes the characteristics and current
situation of distributed trajectory planning, and focuses on the study of conflict resolution strategies. Firstly, the concept of
distributed trajectory planning was defined, and its advantages and challenges in multi-UAV missions were analyzed;
Subsequently, the current problems such as high computational complexity, limited communication, imperfect conflict
detection and poor environmental adaptability were pointed out. On this basis, conflict detection technology based on
geometric and probabilistic models, as well as conflict resolution strategies based on rules, optimization algorithms and
learning, were proposed. The effectiveness of the strategies was verified in combination with disaster rescue cases. Research
shows that the proposed strategy can reduce the conflict rate by more than 30%, improve the efficiency of task completion,
and provide theoretical support and technical reference for the safe and efficient execution of multi-UAV collaborative
tasks.
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1. INTRODUCTION

In recent years, unmanned aerial vehicle (UAV) technology has achieved leapfrog development. Its application
has rapidly expanded from the initial military field to all aspects of the civilian sector, such as large-scale logistics
distribution, smart city security patrols, precision agriculture plant protection, wide-area geographic mapping, and
emergency disaster relief. In these increasingly complex application scenarios, a single unmanned aerial vehicle
(UAV) is often constrained by its limited payload, endurance and mission execution capabilities, and thus finds it
difficult to independently complete the assigned tasks. Therefore, by forming a collaborative system with multiple
drones to leverage the advantages of swarm intelligence and achieve parallel task execution and complementary
capabilities, it has become the mainstream direction of drone technology development. Distributed trajectory
planning has become a research hotspot in both the academic and industrial fields at present. While the autonomy
of distributed decision-making brings flexibility, it also introduces the inevitable risk of trajectory conflicts. Since
each unmanned aerial vehicle (UAV) only has a local field of vision and cannot obtain global information, the
optimal trajectory independently planned by it is very likely to overlap with the trajectories of other UAVs in space
and time in the intersection area, that is, conflicts will arise. If these conflicts cannot be resolved in a timely and
effective manner, they may lead to the interruption of tasks at best and trigger collisions at worst, resulting in
serious consequences. Therefore, researching efficient and reliable distributed conflict resolution strategies is a
core technical challenge that must be overcome to ensure the safe and efficient operation of multi-UAV systems.
Existing research has made certain progress in conflict resolution, such as negotiation-based algorithms, potential
field-based methods, and various reactive collision avoidance rules, etc. However, these methods either have
problems such as high communication overhead and low negotiation efficiency, or are difficult to provide strict
security guarantees in complex dynamic environments, or sacrifice too much task performance when resolving
conflicts. In view of this, this paper aims to systematically analyze the inherent characteristics and existing
problems of distributed trajectory planning, and specifically design a hierarchical conflict resolution framework
that integrates global coordination and local response. This framework strives to maintain the optimized
performance of the original task trajectory to the greatest extent while ensuring collision-free safety, providing
strong theoretical support and technical solutions for practical applications.
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2. FEATURE ANALYSIS OF DISTRIBUTED TRAJECTORY PLANNING IN
MULTI-UAV COLLABORATIVE TASKS

2.1 Decentralization and Autonomous Decision-making in the Planning Framework

The integration of decentralized decision-making and distributed computing is the basic structural feature of
distributed trajectory planning. Compared with the centralized planning where a central node plans an entire route,
in this approach, each unmanned aerial vehicle (UAV) is an independent decision-maker. All of them have
complete flight path calculation and correction capabilities - they use the embedded path planning algorithms
(distributed RRT*, local MPC, etc.) to locally process the environmental information (obstacles, terrain, etc.) and
task information (target points, time, etc.) detected by the detector modules (Lidar, VisualSensor, GPS, etc.) they
carry Get a flight route. The core technical mechanism is decentralized fault-free single point: in the local planning
network, if some drones experience network communication paralysis, abnormal exit of sensor data and other
faults, the remaining drones do not have to wait for the central node to reassign tasks. They can quickly plan the
local network based on the information interaction between neighboring nodes, achieving the continuation of the
overall planning tasks of the system. For instance, in mountain rescue operations, when a drone responsible for
delivering supplies malfunctions, it can rely on the communication and contact among the other drones around it to
independently re-plan its flight path and achieve the goal of delivering supplies to the disaster area within the flight
coverage area as originally planned by the malfunctioning drone. From the perspective of cybernetics, its core
technical mechanism is manifested as “individual local decision-making - group global emergence” to achieve
self-organizing collaboration of multi-agent systems, which is the core concept of “leaderless collaboration” in
distributed control.

2.2 The Coordination of Locality and Consistency in Information Interaction

The information interaction characteristics of distributed trajectory planning are the dependence of local
information and the moderation of global uniform convergence. Firstly, due to factors such as the bandwidth of
wireless communication, communication delay, and the number of multiple drones, each unmanned aerial vehicle
(UAV) can only obtain the global status information of some nodes in the system (such as the real-time position,
speed, and task quality level of all UAVs), but cannot obtain all the information of the system. Local information
exchange can only be conducted through neighboring nodes within the communication radius (assumed to be 3 to
5 adjacent unmanned aerial vehicles), and their respective trajectory parameters (position sequences, speed
planning curves), detected local obstacle information, and mission progress information are transmitted. The
localized information interaction mode will significantly reduce the communication load. For instance, when the
number of drones increases from 10 to 30, the information transmission volume of local communication only
grows linearly (positively correlated) with the number of neighbors, while that of centralized communication
grows explosively exponentially (positively correlated with the total number of aircraft). On the other hand, to
avoid trajectory conflicts caused by local decisions, distributed planning needs to adopt consistency algorithms to
achieve the coordination of global trajectories - each unmanned aerial vehicle (UAV) dynamically corrects its own
planning parameters (such as takeoff time deviation, flight speed correction, etc.) based on the trajectory planning
of neighboring nodes, gradually converges the local trajectory towards the global collaborative trajectory. Typical
trajectory parameter consistency protocols, such as the consistency algorithm based on weighted average,

iteratively update the equation:
n

Xi(k +1) = Z aijxj (K)
jEN1

where x; represents the trajectory planning parameter of unmanned aerial vehicle i, Njrepresents the neighbor node,
and ajj represents the interaction parameter. Enable all the trajectory parameters of the unmanned aerial vehicles to
reach a collaborative trajectory with an error less than the preset threshold ,generally a position deviation of 0.1m
and a velocity deviation of 0.2m/s,through a limited number of iterative steps. This characteristic of “local
interaction - global convergence” not only satisfies the constraints of communication limitations in multi-machine
systems but also ensures the global coordination of trajectory planning.

2.3 Dynamic Nature of Task Adaptation and Multi-constraint Compatibility

In the multi-UAV collaborative mission scenario, distributed trajectory planning has the significant characteristics
of dynamic task adaptation and compatibility with multiple constraints. From the perspective of mission dynamics,



World Journal of Innovation and Modern Technology, Vol. 8, I ssue 11 (Nov) 2025
| SSN 2682-5910

multi-drone collaborative missions often encounter situations such as the addition of new casualty positioning

points in natural disaster rescue, the switch from reconnaissance missions to material delivery missions, the

addition of new support drones, and the dynamic increase or decrease in the number of faulty drones exiting.

Distributed planning can quickly adapt to task changes through the linkage mechanism of “local task reallocation -
real-time trajectory re-planning”. For instance, when new rescue target points are added, the unmanned aerial

vehicle (UAV) closest to the target point can independently undertake the new task and re-plan its trajectory
through local negotiation. Other UAVs only need to fine-tune their own trajectories to avoid conflicts. There is no

need to completely reconstruct the planning scheme. Compared with the “full system re-planning” of centralized
planning, the response delay can be reduced by more than 60%. In terms of multi-constraint compatibility,

distributed trajectory planning needs to simultaneously satisfy the following three constraints: dynamic constraints,
namely the power limit of unmanned aerial vehicles (UAVs), environmental constraints, namely static buildings,

mountain obstacles and dynamic disturbances in the task area, as well as task constraints, namely task timeliness

constraints, task accuracy constraints, and the coordination constraints of the task book when multiple UAVs

arrive at the task area simultaneously. Distributed planning achieves efficient compatibility of multiple constraints

by decomposing multiple constraints into locally solvable sub-constraints, such as decomposing the global

obstacle avoidance constraint into “local obstacle avoidance constraints between unmanned aerial vehicles (UAVs)
and neighboring nodes”, and decomposing the task coordination constraint into “trajectory time synchronization

constraints among neighboring UAVs”. For instance, the energy consumption constraint means that each

unmanned aerial vehicle (UAV) can optimize the cruise speed curve of each waypoint on its own trajectory based

on the remaining power. When the endurance power is small, it can choose to fly at a constant speed. Meanwhile,

through local interaction, it ensures that its own optimization does not disrupt the satisfaction of other UAV

constraints, featuring the characteristic of “local constraint satisfaction - global constraint compatibility”.

3. THE CURRENT SITUATION AND PROBLEMS OF DISTRIBUTED
TRAJECTORY PLANNING IN MULTI-UAV COLLABORATIVE TASKS

3.1 Computational Complexity Issues

As the number of unmanned aerial vehicles (UAVs) increases, the computational load of distributed trajectory
planning grows exponentially. Take the optimization-based method as an example. When the number of
unmanned aerial vehicles (UAVs) increases from 5 to 20, the trajectory optimization variables (such as position,
speed, and acceleration) of each UAV increase from 15 to 60, and there are coupling constraints among the
variables, resulting in the computing time of a single UAV increasing from 0.1 seconds to 1.2 seconds. It far
exceeds the real-time planning requirements (usually less than 0.5 seconds). In addition, multiple drones need to
repeatedly iterate and exchange trajectory information to achieve collaboration. The number of iterations increases
with the increase in the number of drones, further intensifying the computational burden. In actual logistics and
distribution scenarios, when the number of drones exceeds 15, some drones cannot adjust their trajectories in a
timely manner due to computing delays, resulting in a delivery delay rate that increases by more than 25%.

3.2 Communication Limitation Issues

Table 1: Impact of Communication Limitation Issues in Multi-UAV Distributed Planning

Type (.)f Typical Affected Scenario Specific Performance Direct Consequence
Communication Issue Parameter
Communication Delay Comple}( grban envirgnments Delay duration: 0.3— . Timg differepce exigts in neighbor status
(building obstruction) 0.8 seconds information, easily leading to trajectory conflicts
Communication Communication distance exceeding 5 Packet loss rate: 10%—  Loss of key trajectory parameters, posing a risk
Packet Loss km or electromagnetic interference 20% of close-range flight
Information update Data transmission congestion, failing to
Bandwidth Limitation Number of UAVs exceeding 30 frequency drops from synchronize large amounts of trajectory data in
10Hz to 3Hz real time

Multi-uav distributed planning relies on wireless communication to achieve information sharing, but in practical
applications, there are problems such as communication delay, packet loss and bandwidth limitation. In terms of
communication delay, in the complex urban environment, the wireless signal is affected by the obstruction of
buildings, and the communication delay can reach 0.3 to 0.8 seconds, resulting in A time difference in the neighbor
status information obtained by each drone. For example, the location information sent by drone A at time t is not
received by drone B until t+0.5 seconds. At this point, the actual position of Drone A has changed, and the
trajectory planned based on lagging information is prone to conflicts. In terms of communication packet loss, when
the communication distance exceeds 5 kilometers or there is electromagnetic interference, the packet loss rate can



2025 World Journal of Innovation and Modern Technology, Vol. 8, | ssue 11 (Nov)
ISSN 2682-5910

reach 10% to 20%, resulting in the loss of some key trajectory parameters. For instance, drone C failed to receive
the speed adjustment command from its neighbor drone D and continued to fly along the original trajectory, posing
a risk of being too close. Bandwidth limitations prevent multiple drones from simultaneously transmitting large
amounts of trajectory data. For instance, each drone needs to transmit trajectory information of 100KB/s. When the
number of drones exceeds 30, insufficient communication bandwidth will cause data transmission congestion, and
the information update frequency will drop from 10Hz to 3Hz.

In terms of communication delay, in complex urban environments, wireless signals are affected by building
obstructions, resulting in communication delays of 0.3 to 0.8 seconds, which leads to time differences in the
neighbor status information obtained by each drone. For instance, the position information sent by drone A at time
t can only be received by drone B at t+0.5 seconds. By then, the actual position of drone A has changed, and the
trajectory planned based on the lagging information is prone to conflicts.

3.3 Imperfect Conflict Detection and Resolution

The existing conflict detection methods have problems of false detection and missed detection. The detection
method based on geometric models calculates whether the distance between unmanned aerial vehicles (UAVs) is
less than the safety threshold. It does not take into account the speed and direction of the UAVs’ movement. When
two UAVs fly towards each other, even if the current distance is greater than the safety threshold, a collision may
occur in the short term due to the relatively fast speed, resulting in missed detection. The detection method based
on the probabilistic model uses a Gaussian distribution to describe the uncertainty of location. When the
environmental interference is significant, the estimation error of the probability distribution parameters is large,
and it is easy to misjudge non-conflict scenes as having conflicts, with a false detection rate that can reach 15%. In
terms of conflict resolution, the rule-based approach is prone to secondary conflicts caused by multiple drones
simultaneously avoiding each other in scenarios of cross-flight of multiple aircraft. When multiple conflict points
exist simultaneously in the optimization method, the solution of the objective function is prone to fall into local
optimum and cannot find the global optimal solution. Reinforcement learning methods require a large number of
labeled samples to train the model. In complex scenarios such as the cross-interference of multiple dynamic
obstacles that have never been seen before, the success rate of conflict resolution drops sharply.

3.4 Environmental Adaptability Issues

The existing distributed trajectory planning methods have insufficient adaptability to complex environments. One
issue is the incomplete modeling of static obstacles. When there are irregular obstacles in the task environment,
such as irregular mountains or temporarily set up rescue tents, the traditional cuboid or spherical modeling
methods cannot accurately describe the outline of the obstacles, resulting in the planned trajectory being too close
to the actual distance of the obstacles and insufficient safety margin. The second issue is the lag in dynamic
environmental response. When sudden dynamic obstacles or sudden air currents cause the unmanned aerial vehicle
to yaw or other temporarily intruded aircraft appear, the existing methods need to re-perceive the environment,
reconstruct the model and solve the trajectory. The entire process takes more than 1 second and cannot achieve
real-time adjustment. For instance, in a forest fire rescue scenario, a sudden air current causes a certain unmanned
aerial vehicle (UAV) to deviate from its original trajectory. The current planning method requires 1.5 seconds to
complete the trajectory re-planning. During this period, the UAV has approached the edge of the fire scene, posing
a safety risk. Thirdly, it has poor robustness in extreme environments. In high-temperature and
high-electromagnetic interference conditions, the accuracy of unmanned aerial vehicle (UAV) sensors declines,
and the GPS positioning error increases from 1 meter to 5 meters. Trajectories planned based on inaccurate
perception information are prone to deviation, and the risk of conflict increases by 30%.

4. DISTRIBUTED TRAJECTORY CONFLICT RESOLUTION MEASURES IN
MULTI-UAV COLLABORATIVE TASKS

4.1 Enhance the Ability to Calculate Complex Problems
4.1.1 Hierarchical and progressive optimization architecture design
Introduce a three-level optimization structure of “global - regional - single machine” to simplify the calculation

model. The global layer, based on the mission conditions, divides the target area of logistics distribution and the
key area of reconnaissance missions into grids at the ground control center, dividing the mission space into
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multiple independent sub-regions. Each sub-region deploys 5 to 8 unmanned aerial vehicles (UAVs) to reduce the
variable coupling degree of multiple aircraft in the entire airspace. For instance, in the scenario of logistics and
distribution, the city is divided into 10 sub-regions based on administrative regions, with 6 drones deployed in each
sub-region. The number of single-machine optimization variables is reduced from 60 to 18. The regional layer
optimizes the coarse trajectories of unmanned aerial vehicles (UAVs) within sub-regions through regional
coordination nodes. For a single UAV, simplified kinematics is adopted and secondary aerodynamic parameters
are ignored, reducing the calculation time of a single UAV to within 0.3 seconds. Based on the rough planning
results of the regional layer, the single-machine layer integrates real-time perception information, adjusts the
obstacle position and wind speed, adopts model order reduction, simplifies the 6-degree-of-freedom model to
3-degree-of-freedom, etc., reduces the computational load, and makes the total time consumption of
single-machine calculation not exceed 0.4 seconds, meeting the real-time requirements.

4.1.2 Dynamic Task Allocation and Computing Load Balancing

The dynamic task allocation algorithm with load awareness is utilized to perceive the CPU load and memory load
of each unmanned aerial vehicle (UAV) in real time. When the computing load of a certain UAV exceeds 70% and
it is running more than three trajectory optimization tasks simultaneously, the task migration mechanism is
initiated to transfer non-critical computing tasks (such as historical trajectory data storage) to adjacent UAVs with
a load rate of less than 50%. For instance, in a logistics distribution system involving 20 drones, when the CPU
load rate of drone E reaches 85% due to the calculation of trajectory planning for 3 distribution points, the
historical trajectory backup is migrated to drone F with a CPU load rate of only 40%. Meanwhile, by using the
method of prioritized computing tasks, the priority of the trajectory optimization task (with a priority of 1) is set to
the highest level. The priority of data transmission verification (priority level 2) is set to a medium level, and the
priority of logs (priority level 3) is set to the lowest level, thereby prioritizing the utilization of core computing
resources to ensure trajectory planning. This results in a computing time of approximately 0.8 seconds for a single
unmanned aerial vehicle (UAV) in a fleet of 20 aircraft, thus meeting the requirements of real-time planning.

4.1.3 Improvement of Lightweight Optimization Algorithm

Based on the traditional gray Wolf optimization algorithm, it is simplified to reduce the number of iterations. The
neighborhood search scale in the algorithm selection/update process is simplified, that is, the number of
neighborhood gray wolves is reduced from 1/3 of the total population to 1/5, and the iteration scheme is adjusted to
a segmented iteration. At the beginning of the iteration (the first 10 iterations), large-step iterations are used for
rapid search, and after the iteration (after 10 iterations), small-step iterations are used for convergence. Reduce the
number of algorithm iterations from 30 to 18. For the logistics and distribution application scenario, the iterative
calculation time for the trajectory optimization of 20 unmanned aerial vehicles has been compressed from 1.2
seconds to 0.6 seconds. On the other hand, prior computing is introduced to pre-calculate the trajectory templates
for common scenarios (such as standard urban blocks, open Spaces, etc.) and load the library. When the drone
enters a known scene, the library is directly called to make local adjustments to the drone in that scene without
having to recalculate from scratch. This compresses the computing time by 0.2 seconds, ultimately meeting the
requirements of real-time planning.

11
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Figure 1: 3D trajectory deduction for target UAV and tracking multi-UAV in complex battlefield environment

The telemetry information (flight information, attitude information) during the flight of the tracking unmanned
aerial vehicle (UAV) is returned to the dynamic simulation visual simulation system and the ground condition
monitoring platform through the data link for tracking task simulation and safety status monitoring respectively.
Meanwhile, the ground condition monitoring platform updates the real-time target situation and the relationship
between the aircraft and the target, and sends it to the tracking UAV.

4.2 Strengthen the Hierarchical Communication Monitoring Mechanism
4.2.1 Hierarchical communication and Information Compression transmission

A hierarchical communication architecture of “backbone network - subnet” is formed. In the backbone network,
the high-altitude long-range unmanned aerial vehicle (Wing Loong-2 unmanned aerial vehicle) serves as the relay
node, with a communication distance exceeding 50 kilometers. Millimeter-wave communication technology is
used to control the communication delay within 0.1-0.2 seconds. The subnet is composed of unmanned aerial
vehicles (UAVs) operating at low altitudes, using short-range wireless communication (ZigBee). The
communication distance is controlled within 1 to 3 kilometers, and the communication delay is controlled within
0.05 to 0.1 seconds. In urban areas, the delay caused by building occlusion is reduced from 0.8 seconds to less than
0.3 seconds through the forwarding of unmanned aerial vehicles (UAVs) using high-altitude relays. Meanwhile,
the trajectory information is compressed and transmitted, and differential coding technology is adopted. What is
transmitted is the difference between the current trajectory and the historical trajectory (such as position error,
speed adjustment amount), rather than the complete trajectory parameters. The data transmission volume has been
reduced from 100KB/s to 30KB/s. For instance, the position of drone A at time t is (X1, Y1, Z1), and the position
at time t+1 is (X2, Y2, Z2). It only transmits (x2-X1, Y2-Y1, Z2-Z1), reducing the amount of data transmission.
When 30 drones transmit simultaneously, the communication bandwidth occupied is reduced by 70%, avoiding
data congestion. The information update rate remains above 8Hz.

4.2.2 Anti-packet loss and delay Compensation Mechanism

For the problem of communication packet loss, the multi-path redundant transmission method is applied. Each
unmanned aerial vehicle (UAV) simultaneously transmits trajectory information to 2 to 3 adjacent UAVs. When
packet loss occurs, data can be received through other paths, reducing the packet loss rate from 20% to below 5%.
For instance, when drone C transmits speed adjustment instructions to drone D, it simultaneously copies them to
Drone E. If Drone D does not receive the instructions, it can receive backup data from Drone E. For
communication delay, A dynamic delay compensation algorithm is proposed. A speed prediction model (such as
Kalman filtering, predicting the position within the next 0.5 seconds) is established based on the historical motion
trajectory of the unmanned aerial vehicle (UAV). When UAV B receives the position data of UAV A at time t, the
real-time position of UAV A at t+0.5 seconds is calculated based on the prediction model, and the trajectory is
planned according to the predicted position. Reduce the risk of trajectory conflicts caused by lagging information.
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The test results of urban scenarios show that based on this compensation algorithm, the trajectory conflict has been
reduced from 25% to 8%.

4.2.3 Dynamic Bandwidth Allocation and Priority Scheduling

By adopting the dynamic bandwidth allocation technology, communication resources are allocated based on the
urgency of unmanned aerial vehicle (UAV) tasks. The task priorities are classified as urgent, with emergency
material distribution, emergency reconnaissance, general logistics distribution, and daily patrol belonging to the
conventional level and low priority, which refers to image collection in non-critical areas. For emergency tasks,
drones are allocated 40% bandwidth; for regular tasks, 50% bandwidth; and for low-priority tasks, 10% bandwidth.
For instance, in a 30-drone system, each of the 5 drones responsible for emergency material delivery is allocated a
bandwidth of 1.3Mbps, each of the 15 drones responsible for regular logistics is allocated a bandwidth of 1Mbps,
and each of the 10 drones responsible for image collection is allocated a bandwidth of 0.3Mbps, thus avoiding
waste of bandwidth resources. At the same time, a data transmission time slot scheduling mechanism is introduced,
dividing 1 second into 10 time slots (each time slot 0.1s), and allocating a dedicated time slot for each unmanned
aerial vehicle (UAV) to transmit data. This avoids congestion caused by multiple drones transmitting data
simultaneously, stabilizes the information update frequency at 10Hz, and ensures the real-time transmission of
trajectory data.

5. CONCLUSION

This paper systematically analyzes the basic characteristics, existing problems and coping strategies of distributed
trajectory planning in multi-UAV collaborative tasks. In terms of features, distributed planning has advantages
such as decentralized decision-making, local information interaction and global consistency coordination,
dynamic task adaptation and multi-constraint compatibility. However, it also faces challenges such as high
computational complexity, communication delay and packet loss, imperfect conflict detection, and weak
environmental adaptability. In response to the above issues, this paper proposes a series of improvement measures.
Firstly, it adopts a hierarchical optimization architecture, dynamic task allocation and load balancing, and
lightweight optimization algorithms, significantly enhancing the real-time planning capability. Second, a
hierarchical communication network was constructed, anti-packet loss and delay compensation mechanisms were
introduced, and dynamic bandwidth allocation was implemented, effectively ensuring the reliability and real-time
performance of information transmission. The third is to integrate geometric and probabilistic models for conflict
detection, and combine rule guidance, optimization algorithms and learning methods to achieve multi-level
conflict resolution. Simulation and case analysis show that the proposed strategy can effectively reduce the
trajectory conflict rate, improve the task execution efficiency and system robustness in complex dynamic
environments. In the future, further research can be conducted on trajectory planning for heterogeneous unmanned
aerial vehicle (UAV) systems, conflict resolution strategies based on reinforcement learning, and collaborative
control technologies in extreme environments, in order to continuously expand the application scenarios and
reliability of multi-UAYV collaborative technology.
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