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Abstract: Aiming at the problems of low efficiency and insufficient conflict resolution ability existing in distributed 

trajectory planning in multi-UAV cooperative tasks, this paper systematically analyzes the characteristics and current 

situation of distributed trajectory planning, and focuses on the study of conflict resolution strategies. Firstly, the concept of 

distributed trajectory planning was defined, and its advantages and challenges in multi-UAV missions were analyzed; 

Subsequently, the current problems such as high computational complexity, limited communication, imperfect conflict 

detection and poor environmental adaptability were pointed out. On this basis, conflict detection technology based on 

geometric and probabilistic models, as well as conflict resolution strategies based on rules, optimization algorithms and 

learning, were proposed. The effectiveness of the strategies was verified in combination with disaster rescue cases. Research 

shows that the proposed strategy can reduce the conflict rate by more than 30%, improve the efficiency of task completion, 

and provide theoretical support and technical reference for the safe and efficient execution of multi-UAV collaborative 

tasks. 
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1. INTRODUCTION 
 

In recent years, unmanned aerial vehicle (UAV) technology has achieved leapfrog development. Its application 

has rapidly expanded from the initial military field to all aspects of the civilian sector, such as large-scale logistics 

distribution, smart city security patrols, precision agriculture plant protection, wide-area geographic mapping, and 

emergency disaster relief. In these increasingly complex application scenarios, a single unmanned aerial vehicle 

(UAV) is often constrained by its limited payload, endurance and mission execution capabilities, and thus finds it 

difficult to independently complete the assigned tasks. Therefore, by forming a collaborative system with multiple 

drones to leverage the advantages of swarm intelligence and achieve parallel task execution and complementary 

capabilities, it has become the mainstream direction of drone technology development. Distributed trajectory 

planning has become a research hotspot in both the academic and industrial fields at present. While the autonomy 

of distributed decision-making brings flexibility, it also introduces the inevitable risk of trajectory conflicts. Since 

each unmanned aerial vehicle (UAV) only has a local field of vision and cannot obtain global information, the 

optimal trajectory independently planned by it is very likely to overlap with the trajectories of other UAVs in space 

and time in the intersection area, that is, conflicts will arise. If these conflicts cannot be resolved in a timely and 

effective manner, they may lead to the interruption of tasks at best and trigger collisions at worst, resulting in 

serious consequences. Therefore, researching efficient and reliable distributed conflict resolution strategies is a 

core technical challenge that must be overcome to ensure the safe and efficient operation of multi-UAV systems. 

Existing research has made certain progress in conflict resolution, such as negotiation-based algorithms, potential 

field-based methods, and various reactive collision avoidance rules, etc. However, these methods either have 

problems such as high communication overhead and low negotiation efficiency, or are difficult to provide strict 

security guarantees in complex dynamic environments, or sacrifice too much task performance when resolving 

conflicts. In view of this, this paper aims to systematically analyze the inherent characteristics and existing 

problems of distributed trajectory planning, and specifically design a hierarchical conflict resolution framework 

that integrates global coordination and local response. This framework strives to maintain the optimized 

performance of the original task trajectory to the greatest extent while ensuring collision-free safety, providing 

strong theoretical support and technical solutions for practical applications. 
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2. FEATURE ANALYSIS OF DISTRIBUTED TRAJECTORY PLANNING IN 

MULTI-UAV COLLABORATIVE TASKS  
 

2.1 Decentralization and Autonomous Decision-making in the Planning Framework  

 

The integration of decentralized decision-making and distributed computing is the basic structural feature of 

distributed trajectory planning. Compared with the centralized planning where a central node plans an entire route, 

in this approach, each unmanned aerial vehicle (UAV) is an independent decision-maker. All of them have 

complete flight path calculation and correction capabilities - they use the embedded path planning algorithms 

(distributed RRT*, local MPC, etc.) to locally process the environmental information (obstacles, terrain, etc.) and 

task information (target points, time, etc.) detected by the detector modules (Lidar, VisualSensor, GPS, etc.) they 

carry Get a flight route. The core technical mechanism is decentralized fault-free single point: in the local planning 

network, if some drones experience network communication paralysis, abnormal exit of sensor data and other 

faults, the remaining drones do not have to wait for the central node to reassign tasks. They can quickly plan the 

local network based on the information interaction between neighboring nodes, achieving the continuation of the 

overall planning tasks of the system. For instance, in mountain rescue operations, when a drone responsible for 

delivering supplies malfunctions, it can rely on the communication and contact among the other drones around it to 

independently re-plan its flight path and achieve the goal of delivering supplies to the disaster area within the flight 

coverage area as originally planned by the malfunctioning drone. From the perspective of cybernetics, its core 

technical mechanism is manifested as “individual local decision-making - group global emergence” to achieve 

self-organizing collaboration of multi-agent systems, which is the core concept of “leaderless collaboration” in 

distributed control. 

 

2.2 The Coordination of Locality and Consistency in Information Interaction  

 

The information interaction characteristics of distributed trajectory planning are the dependence of local 

information and the moderation of global uniform convergence. Firstly, due to factors such as the bandwidth of 

wireless communication, communication delay, and the number of multiple drones, each unmanned aerial vehicle 

(UAV) can only obtain the global status information of some nodes in the system (such as the real-time position, 

speed, and task quality level of all UAVs), but cannot obtain all the information of the system. Local information 

exchange can only be conducted through neighboring nodes within the communication radius (assumed to be 3 to 

5 adjacent unmanned aerial vehicles), and their respective trajectory parameters (position sequences, speed 

planning curves), detected local obstacle information, and mission progress information are transmitted. The 

localized information interaction mode will significantly reduce the communication load. For instance, when the 

number of drones increases from 10 to 30, the information transmission volume of local communication only 

grows linearly (positively correlated) with the number of neighbors, while that of centralized communication 

grows explosively exponentially (positively correlated with the total number of aircraft). On the other hand, to 

avoid trajectory conflicts caused by local decisions, distributed planning needs to adopt consistency algorithms to 

achieve the coordination of global trajectories - each unmanned aerial vehicle (UAV) dynamically corrects its own 

planning parameters (such as takeoff time deviation, flight speed correction, etc.) based on the trajectory planning 

of neighboring nodes, gradually converges the local trajectory towards the global collaborative trajectory. Typical 

trajectory parameter consistency protocols, such as the consistency algorithm based on weighted average, 

iteratively update the equation： 

𝑋𝑖(𝑘 + 1) = ∑ 𝑎𝑖𝑗𝑥𝑗(𝐾)

𝑛

𝑗∈𝑁1

 

where xi represents the trajectory planning parameter of unmanned aerial vehicle i, Ni represents the neighbor node, 

and aij represents the interaction parameter. Enable all the trajectory parameters of the unmanned aerial vehicles to 

reach a collaborative trajectory with an error less than the preset threshold ,generally a position deviation of 0.1m 

and a velocity deviation of 0.2m/s,through a limited number of iterative steps. This characteristic of “local 

interaction - global convergence” not only satisfies the constraints of communication limitations in multi-machine 

systems but also ensures the global coordination of trajectory planning. 

 

2.3 Dynamic Nature of Task Adaptation and Multi-constraint Compatibility  

 

In the multi-UAV collaborative mission scenario, distributed trajectory planning has the significant characteristics 

of dynamic task adaptation and compatibility with multiple constraints. From the perspective of mission dynamics, 
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multi-drone collaborative missions often encounter situations such as the addition of new casualty positioning 

points in natural disaster rescue, the switch from reconnaissance missions to material delivery missions, the 

addition of new support drones, and the dynamic increase or decrease in the number of faulty drones exiting. 

Distributed planning can quickly adapt to task changes through the linkage mechanism of “local task reallocation - 

real-time trajectory re-planning”. For instance, when new rescue target points are added, the unmanned aerial 

vehicle (UAV) closest to the target point can independently undertake the new task and re-plan its trajectory 

through local negotiation. Other UAVs only need to fine-tune their own trajectories to avoid conflicts. There is no 

need to completely reconstruct the planning scheme. Compared with the “full system re-planning” of centralized 

planning, the response delay can be reduced by more than 60%. In terms of multi-constraint compatibility, 

distributed trajectory planning needs to simultaneously satisfy the following three constraints: dynamic constraints, 

namely the power limit of unmanned aerial vehicles (UAVs), environmental constraints, namely static buildings, 

mountain obstacles and dynamic disturbances in the task area, as well as task constraints, namely task timeliness 

constraints, task accuracy constraints, and the coordination constraints of the task book when multiple UAVs 

arrive at the task area simultaneously. Distributed planning achieves efficient compatibility of multiple constraints 

by decomposing multiple constraints into locally solvable sub-constraints, such as decomposing the global 

obstacle avoidance constraint into “local obstacle avoidance constraints between unmanned aerial vehicles (UAVs) 

and neighboring nodes”, and decomposing the task coordination constraint into “trajectory time synchronization 

constraints among neighboring UAVs”. For instance, the energy consumption constraint means that each 

unmanned aerial vehicle (UAV) can optimize the cruise speed curve of each waypoint on its own trajectory based 

on the remaining power. When the endurance power is small, it can choose to fly at a constant speed. Meanwhile, 

through local interaction, it ensures that its own optimization does not disrupt the satisfaction of other UAV 

constraints, featuring the characteristic of “local constraint satisfaction - global constraint compatibility”. 

 

3. THE CURRENT SITUATION AND PROBLEMS OF DISTRIBUTED 

TRAJECTORY PLANNING IN MULTI-UAV COLLABORATIVE TASKS 
 

3.1 Computational Complexity Issues 

 

As the number of unmanned aerial vehicles (UAVs) increases, the computational load of distributed trajectory 

planning grows exponentially. Take the optimization-based method as an example. When the number of 

unmanned aerial vehicles (UAVs) increases from 5 to 20, the trajectory optimization variables (such as position, 

speed, and acceleration) of each UAV increase from 15 to 60, and there are coupling constraints among the 

variables, resulting in the computing time of a single UAV increasing from 0.1 seconds to 1.2 seconds. It far 

exceeds the real-time planning requirements (usually less than 0.5 seconds). In addition, multiple drones need to 

repeatedly iterate and exchange trajectory information to achieve collaboration. The number of iterations increases 

with the increase in the number of drones, further intensifying the computational burden. In actual logistics and 

distribution scenarios, when the number of drones exceeds 15, some drones cannot adjust their trajectories in a 

timely manner due to computing delays, resulting in a delivery delay rate that increases by more than 25%. 

 

3.2 Communication Limitation Issues 

Table 1: Impact of Communication Limitation Issues in Multi-UAV Distributed Planning 
Type of 

Communication Issue 
Typical Affected Scenario 

Specific Performance 
Parameter 

Direct Consequence 

Communication Delay 
Complex urban environments 

(building obstruction) 

Delay duration: 0.3–

0.8 seconds 

Time difference exists in neighbor status 

information, easily leading to trajectory conflicts 

Communication 

Packet Loss 

Communication distance exceeding 5 

km or electromagnetic interference 

Packet loss rate: 10%–

20% 

Loss of key trajectory parameters, posing a risk 

of close-range flight 

Bandwidth Limitation Number of UAVs exceeding 30 

Information update 

frequency drops from 

10Hz to 3Hz 

Data transmission congestion, failing to 

synchronize large amounts of trajectory data in 

real time 

 

Multi-uav distributed planning relies on wireless communication to achieve information sharing, but in practical 

applications, there are problems such as communication delay, packet loss and bandwidth limitation. In terms of 

communication delay, in the complex urban environment, the wireless signal is affected by the obstruction of 

buildings, and the communication delay can reach 0.3 to 0.8 seconds, resulting in A time difference in the neighbor 

status information obtained by each drone. For example, the location information sent by drone A at time t is not 

received by drone B until t+0.5 seconds. At this point, the actual position of Drone A has changed, and the 

trajectory planned based on lagging information is prone to conflicts. In terms of communication packet loss, when 

the communication distance exceeds 5 kilometers or there is electromagnetic interference, the packet loss rate can 
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reach 10% to 20%, resulting in the loss of some key trajectory parameters. For instance, drone C failed to receive 

the speed adjustment command from its neighbor drone D and continued to fly along the original trajectory, posing 

a risk of being too close. Bandwidth limitations prevent multiple drones from simultaneously transmitting large 

amounts of trajectory data. For instance, each drone needs to transmit trajectory information of 100KB/s. When the 

number of drones exceeds 30, insufficient communication bandwidth will cause data transmission congestion, and 

the information update frequency will drop from 10Hz to 3Hz. 

 

In terms of communication delay, in complex urban environments, wireless signals are affected by building 

obstructions, resulting in communication delays of 0.3 to 0.8 seconds, which leads to time differences in the 

neighbor status information obtained by each drone. For instance, the position information sent by drone A at time 

t can only be received by drone B at t+0.5 seconds. By then, the actual position of drone A has changed, and the 

trajectory planned based on the lagging information is prone to conflicts. 

 

3.3 Imperfect Conflict Detection and Resolution 

 

The existing conflict detection methods have problems of false detection and missed detection. The detection 

method based on geometric models calculates whether the distance between unmanned aerial vehicles (UAVs) is 

less than the safety threshold. It does not take into account the speed and direction of the UAVs’ movement. When 

two UAVs fly towards each other, even if the current distance is greater than the safety threshold, a collision may 

occur in the short term due to the relatively fast speed, resulting in missed detection. The detection method based 

on the probabilistic model uses a Gaussian distribution to describe the uncertainty of location. When the 

environmental interference is significant, the estimation error of the probability distribution parameters is large, 

and it is easy to misjudge non-conflict scenes as having conflicts, with a false detection rate that can reach 15%. In 

terms of conflict resolution, the rule-based approach is prone to secondary conflicts caused by multiple drones 

simultaneously avoiding each other in scenarios of cross-flight of multiple aircraft. When multiple conflict points 

exist simultaneously in the optimization method, the solution of the objective function is prone to fall into local 

optimum and cannot find the global optimal solution. Reinforcement learning methods require a large number of 

labeled samples to train the model. In complex scenarios such as the cross-interference of multiple dynamic 

obstacles that have never been seen before, the success rate of conflict resolution drops sharply. 

 

3.4 Environmental Adaptability Issues 

 

The existing distributed trajectory planning methods have insufficient adaptability to complex environments. One 

issue is the incomplete modeling of static obstacles. When there are irregular obstacles in the task environment, 

such as irregular mountains or temporarily set up rescue tents, the traditional cuboid or spherical modeling 

methods cannot accurately describe the outline of the obstacles, resulting in the planned trajectory being too close 

to the actual distance of the obstacles and insufficient safety margin. The second issue is the lag in dynamic 

environmental response. When sudden dynamic obstacles or sudden air currents cause the unmanned aerial vehicle 

to yaw or other temporarily intruded aircraft appear, the existing methods need to re-perceive the environment, 

reconstruct the model and solve the trajectory. The entire process takes more than 1 second and cannot achieve 

real-time adjustment. For instance, in a forest fire rescue scenario, a sudden air current causes a certain unmanned 

aerial vehicle (UAV) to deviate from its original trajectory. The current planning method requires 1.5 seconds to 

complete the trajectory re-planning. During this period, the UAV has approached the edge of the fire scene, posing 

a safety risk. Thirdly, it has poor robustness in extreme environments. In high-temperature and 

high-electromagnetic interference conditions, the accuracy of unmanned aerial vehicle (UAV) sensors declines, 

and the GPS positioning error increases from 1 meter to 5 meters. Trajectories planned based on inaccurate 

perception information are prone to deviation, and the risk of conflict increases by 30%. 

 

4. DISTRIBUTED TRAJECTORY CONFLICT RESOLUTION MEASURES IN 

MULTI-UAV COLLABORATIVE TASKS  
 

4.1 Enhance the Ability to Calculate Complex Problems  

 

4.1.1 Hierarchical and progressive optimization architecture design  

 

Introduce a three-level optimization structure of “global - regional - single machine” to simplify the calculation 

model. The global layer, based on the mission conditions, divides the target area of logistics distribution and the 

key area of reconnaissance missions into grids at the ground control center, dividing the mission space into 
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multiple independent sub-regions. Each sub-region deploys 5 to 8 unmanned aerial vehicles (UAVs) to reduce the 

variable coupling degree of multiple aircraft in the entire airspace. For instance, in the scenario of logistics and 

distribution, the city is divided into 10 sub-regions based on administrative regions, with 6 drones deployed in each 

sub-region. The number of single-machine optimization variables is reduced from 60 to 18. The regional layer 

optimizes the coarse trajectories of unmanned aerial vehicles (UAVs) within sub-regions through regional 

coordination nodes. For a single UAV, simplified kinematics is adopted and secondary aerodynamic parameters 

are ignored, reducing the calculation time of a single UAV to within 0.3 seconds. Based on the rough planning 

results of the regional layer, the single-machine layer integrates real-time perception information, adjusts the 

obstacle position and wind speed, adopts model order reduction, simplifies the 6-degree-of-freedom model to 

3-degree-of-freedom, etc., reduces the computational load, and makes the total time consumption of 

single-machine calculation not exceed 0.4 seconds, meeting the real-time requirements. 

 

4.1.2 Dynamic Task Allocation and Computing Load Balancing  

 

The dynamic task allocation algorithm with load awareness is utilized to perceive the CPU load and memory load 

of each unmanned aerial vehicle (UAV) in real time. When the computing load of a certain UAV exceeds 70% and 

it is running more than three trajectory optimization tasks simultaneously, the task migration mechanism is 

initiated to transfer non-critical computing tasks (such as historical trajectory data storage) to adjacent UAVs with 

a load rate of less than 50%. For instance, in a logistics distribution system involving 20 drones, when the CPU 

load rate of drone E reaches 85% due to the calculation of trajectory planning for 3 distribution points, the 

historical trajectory backup is migrated to drone F with a CPU load rate of only 40%. Meanwhile, by using the 

method of prioritized computing tasks, the priority of the trajectory optimization task (with a priority of 1) is set to 

the highest level. The priority of data transmission verification (priority level 2) is set to a medium level, and the 

priority of logs (priority level 3) is set to the lowest level, thereby prioritizing the utilization of core computing 

resources to ensure trajectory planning. This results in a computing time of approximately 0.8 seconds for a single 

unmanned aerial vehicle (UAV) in a fleet of 20 aircraft, thus meeting the requirements of real-time planning.  

 

4.1.3 Improvement of Lightweight Optimization Algorithm  

 

Based on the traditional gray Wolf optimization algorithm, it is simplified to reduce the number of iterations. The 

neighborhood search scale in the algorithm selection/update process is simplified, that is, the number of 

neighborhood gray wolves is reduced from 1/3 of the total population to 1/5, and the iteration scheme is adjusted to 

a segmented iteration. At the beginning of the iteration (the first 10 iterations), large-step iterations are used for 

rapid search, and after the iteration (after 10 iterations), small-step iterations are used for convergence. Reduce the 

number of algorithm iterations from 30 to 18. For the logistics and distribution application scenario, the iterative 

calculation time for the trajectory optimization of 20 unmanned aerial vehicles has been compressed from 1.2 

seconds to 0.6 seconds. On the other hand, prior computing is introduced to pre-calculate the trajectory templates 

for common scenarios (such as standard urban blocks, open Spaces, etc.) and load the library. When the drone 

enters a known scene, the library is directly called to make local adjustments to the drone in that scene without 

having to recalculate from scratch. This compresses the computing time by 0.2 seconds, ultimately meeting the 

requirements of real-time planning. 
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Figure 1: 3D trajectory deduction for target UAV and tracking multi-UAV in complex battlefield environment 

The telemetry information (flight information, attitude information) during the flight of the tracking unmanned 

aerial vehicle (UAV) is returned to the dynamic simulation visual simulation system and the ground condition 

monitoring platform through the data link for tracking task simulation and safety status monitoring respectively. 

Meanwhile, the ground condition monitoring platform updates the real-time target situation and the relationship 

between the aircraft and the target, and sends it to the tracking UAV. 

 

4.2 Strengthen the Hierarchical Communication Monitoring Mechanism  

 

4.2.1 Hierarchical communication and Information Compression transmission  

 

A hierarchical communication architecture of “backbone network - subnet” is formed. In the backbone network, 

the high-altitude long-range unmanned aerial vehicle (Wing Loong-2 unmanned aerial vehicle) serves as the relay 

node, with a communication distance exceeding 50 kilometers. Millimeter-wave communication technology is 

used to control the communication delay within 0.1-0.2 seconds. The subnet is composed of unmanned aerial 

vehicles (UAVs) operating at low altitudes, using short-range wireless communication (ZigBee). The 

communication distance is controlled within 1 to 3 kilometers, and the communication delay is controlled within 

0.05 to 0.1 seconds. In urban areas, the delay caused by building occlusion is reduced from 0.8 seconds to less than 

0.3 seconds through the forwarding of unmanned aerial vehicles (UAVs) using high-altitude relays. Meanwhile, 

the trajectory information is compressed and transmitted, and differential coding technology is adopted. What is 

transmitted is the difference between the current trajectory and the historical trajectory (such as position error, 

speed adjustment amount), rather than the complete trajectory parameters. The data transmission volume has been 

reduced from 100KB/s to 30KB/s. For instance, the position of drone A at time t is (X1, Y1, Z1), and the position 

at time t+1 is (X2, Y2, Z2). It only transmits (x2-X1, Y2-Y1, Z2-Z1), reducing the amount of data transmission. 

When 30 drones transmit simultaneously, the communication bandwidth occupied is reduced by 70%, avoiding 

data congestion. The information update rate remains above 8Hz.  

 

4.2.2 Anti-packet loss and delay Compensation Mechanism  

 

For the problem of communication packet loss, the multi-path redundant transmission method is applied. Each 

unmanned aerial vehicle (UAV) simultaneously transmits trajectory information to 2 to 3 adjacent UAVs. When 

packet loss occurs, data can be received through other paths, reducing the packet loss rate from 20% to below 5%. 

For instance, when drone C transmits speed adjustment instructions to drone D, it simultaneously copies them to 

Drone E. If Drone D does not receive the instructions, it can receive backup data from Drone E. For 

communication delay, A dynamic delay compensation algorithm is proposed. A speed prediction model (such as 

Kalman filtering, predicting the position within the next 0.5 seconds) is established based on the historical motion 

trajectory of the unmanned aerial vehicle (UAV). When UAV B receives the position data of UAV A at time t, the 

real-time position of UAV A at t+0.5 seconds is calculated based on the prediction model, and the trajectory is 

planned according to the predicted position. Reduce the risk of trajectory conflicts caused by lagging information. 

12



 
                                                                                                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

World Journal of Innovation and Modern Technology, Vol. 8, Issue 11 (Nov) 
ISSN 2682-5910 2025  

  

 
 

  
 

 

The test results of urban scenarios show that based on this compensation algorithm, the trajectory conflict has been 

reduced from 25% to 8%.  

 

4.2.3 Dynamic Bandwidth Allocation and Priority Scheduling 

 

By adopting the dynamic bandwidth allocation technology, communication resources are allocated based on the 

urgency of unmanned aerial vehicle (UAV) tasks. The task priorities are classified as urgent, with emergency 

material distribution, emergency reconnaissance, general logistics distribution, and daily patrol belonging to the 

conventional level and low priority, which refers to image collection in non-critical areas. For emergency tasks, 

drones are allocated 40% bandwidth; for regular tasks, 50% bandwidth; and for low-priority tasks, 10% bandwidth. 

For instance, in a 30-drone system, each of the 5 drones responsible for emergency material delivery is allocated a 

bandwidth of 1.3Mbps, each of the 15 drones responsible for regular logistics is allocated a bandwidth of 1Mbps, 

and each of the 10 drones responsible for image collection is allocated a bandwidth of 0.3Mbps, thus avoiding 

waste of bandwidth resources. At the same time, a data transmission time slot scheduling mechanism is introduced, 

dividing 1 second into 10 time slots (each time slot 0.1s), and allocating a dedicated time slot for each unmanned 

aerial vehicle (UAV) to transmit data. This avoids congestion caused by multiple drones transmitting data 

simultaneously, stabilizes the information update frequency at 10Hz, and ensures the real-time transmission of 

trajectory data. 

 

5. CONCLUSION 
 

This paper systematically analyzes the basic characteristics, existing problems and coping strategies of distributed 

trajectory planning in multi-UAV collaborative tasks. In terms of features, distributed planning has advantages 

such as decentralized decision-making, local information interaction and global consistency coordination, 

dynamic task adaptation and multi-constraint compatibility. However, it also faces challenges such as high 

computational complexity, communication delay and packet loss, imperfect conflict detection, and weak 

environmental adaptability. In response to the above issues, this paper proposes a series of improvement measures. 

Firstly, it adopts a hierarchical optimization architecture, dynamic task allocation and load balancing, and 

lightweight optimization algorithms, significantly enhancing the real-time planning capability. Second, a 

hierarchical communication network was constructed, anti-packet loss and delay compensation mechanisms were 

introduced, and dynamic bandwidth allocation was implemented, effectively ensuring the reliability and real-time 

performance of information transmission. The third is to integrate geometric and probabilistic models for conflict 

detection, and combine rule guidance, optimization algorithms and learning methods to achieve multi-level 

conflict resolution. Simulation and case analysis show that the proposed strategy can effectively reduce the 

trajectory conflict rate, improve the task execution efficiency and system robustness in complex dynamic 

environments. In the future, further research can be conducted on trajectory planning for heterogeneous unmanned 

aerial vehicle (UAV) systems, conflict resolution strategies based on reinforcement learning, and collaborative 

control technologies in extreme environments, in order to continuously expand the application scenarios and 

reliability of multi-UAV collaborative technology. 
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