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Abstract: With the rapid development of the marine economy, maritime traffic supervision and safety management have
raised higher requirements for ship detection. Traditional methods suffer from low efficiency and high false detection rates,
making it difficult to meet the needs of intelligent maritime management. This paper proposes a ship target detection model
based on YOLOvS. Experimental results show that the model achieves 99.15% mAP@S50 and 85.14% mAP@50:95,
effectively handling ship recognition tasks under complex sea conditions, providing reliable technical support for smart
ocean construction and maritime supervision.
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1. INTRODUCTION

Against the backdrop of accelerating global trade and ocean development, the density of maritime traffic is
continuously increasing, posing higher requirements for real-time detection and recognition of ship targets.
Traditional methods, such as radar and manual observation, are inefficient and prone to high false detection rates
under complex sea conditions, with limited capability in detecting small vessels, making them inadequate for
modern maritime traffic supervision and safety needs. Meanwhile, the increasing number of vessels, the diversity
of navigation environments, and the frequent occurrence of extreme weather conditions present further challenges
to existing ship detection technologies.

In recent years, the development of computer vision and deep learning technologies has provided new solutions
for ship target detection. The introduction of convolutional neural networks (CNNs) has enabled end-to-end
automated detection. YOLO series models, with their end-to-end training, efficient inference, and high accuracy,
have become one of the mainstream approaches in object detection. From YOLOv3 to YOLOVS, continuous
iteration has improved both detection accuracy and inference speed. However, challenges remain in low visibility,
dense occlusion, and small target detection tasks.

As the latest generation improved model, YOLOvVS optimizes both architectural design and training mechanisms.
It adopts an anchor-free detection mechanism and decoupled detection head, reducing the limitations of prior box
designs. At the same time, it incorporates multi-scale feature fusion and dynamic label assignment strategies,
enhancing robustness for small target detection and multi-target recognition in complex backgrounds. Furthermore,
YOLOv8 maintains excellent inference speed, satisfying real-time detection requirements.

Therefore, research on YOLOv8-based ship detection is of great academic significance and can provide technical
support for practical applications in smart ocean development, intelligent shipping management, and port safety
supervision. Experimental validation on multi-scenario and multi-modal datasets can further promote the transition
of ship target detection from laboratory research to engineering applications, laying a foundation for building
intelligent maritime traffic systems.

2. REVIEW OF SHIP TARGET DETECTION TECHNOLOGIES
2.1 Fundamentals of Deep Learning

Deep learning, as an important branch of machine learning, has achieved revolutionary progress in the field of
computer vision, providing strong technical support for object detection tasks. Compared with traditional methods
based on HOG, SIFT features, and SVM classifiers, deep learning automatically learns hierarchical feature
representations from raw data by constructing multi-layer neural networks, avoiding the cumbersome process of
manual feature design. In ship target detection, although traditional methods are fast and memory-efficient, they
lack robustness under complex sea conditions (e.g., fog, low visibility, strong light interference), often resulting

23



2025 World Journal of Innovation and Modern Technology, Vol. 8, | ssue 10 (Oct)
ISSN 2682-5910

in missed and false detections [1].

Convolutional Neural Networks (CNNs) are the core architecture of deep learning in image processing, constructed
by stacking convolutional layers, pooling layers, and fully connected layers [2]. With continuous architectural
optimization in recent years, efficient CNN architectures such as ResNet [3] and DenseNet [4] have emerged.
Through mechanisms such as residual and dense connections, these networks effectively mitigate gradient
vanishing problems and perform well in large-scale image recognition and detection tasks. These advanced
architectures provide the foundation for high-accuracy ship detection, particularly in multi-scale target detection
under complex sea conditions.

2.2 YOLOvV8 Model Theory

As a representative of single-stage object detection, the YOLO series has gained wide attention for balancing real-
time performance and accuracy. YOLOVS, released by Ultralytics in 2023, consists of three main components:
backbone, neck, and head. The backbone employs a lightweight CNN for feature extraction [5]. The neck adopts
a Path Aggregation Network (PANet) structure to achieve multi-scale feature fusion from both top-down and
bottom-up pathways, enhancing detection capability for ships of different sizes. The detection head outputs final
results, including bounding boxes and classification labels.

2.3 Development and Application of Ship Detection Technologies

Depending on data sources and processing methods, ship detection technologies can be classified into three
categories: optical image-based detection, SAR image-based detection, and multi-modal fusion detection. Optical
image detection utilizes visible or infrared cameras, offering high resolution and rich detail but is easily affected
by lighting and weather. Woo et al. introduced attention mechanisms and feature pyramid networks to improve the
robustness of multi-scale ship detection in optical images [6]. SAR image detection, with all-day and all-weather
capabilities, is suitable for offshore and extreme environments. As ships in SAR imagery are often small targets,
Li et al. introduced an improved feature pyramid structure and designed a noise-resistant loss function to suppress
sea clutter interference, significantly improving detection accuracy [7]. Multi-modal fusion integrates optical
images, infrared, SAR, and AIS (Automatic Identification System) data, allowing systems to leverage
complementary modalities for high-accuracy, robust detection. For example, the DBW-YOLO model combines
deformable convolution and a BiFormer attention-based feature enhancement module, effectively improving
detection performance for nearshore and small vessels [8].

Ship target detection has evolved from traditional methods to deep learning and multi-modal fusion approaches.
The future trend will combine lightweight models with multi-modal data to ensure detection accuracy while
enhancing deployment capabilities in edge devices and large-scale applications.

3. EXPERIMENTS AND RESULTS ANALYSIS
3.1 Dataset

This study adopts the public ship detection dataset SeaShips [9], which contains 7,000 images in total, covering
six categories: ore carrier, fishing boat, bulk cargo ship, general cargo ship, container ship, and passenger ship.
The input image resolution is 640 X 640 pixels. The dataset is randomly split into training, validation, and testing
sets at an 8:1:1 ratio.

Table 1: SeaShips Ship Detection Dataset

. Ore fishing bulk cargo general cargo container passenger
Ship Type carrier boat carrier ship ship ship
Number of 2199 2190 1952 1505 901 474

Images

3.2 Results and Analysis
3.2.1 Experimental Results

To comprehensively and objectively evaluate the performance of the model in ship target detection tasks, this
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paper adopts the following evaluation metrics: precision (P), recall (R), mean Average Precision at IoU threshold
0.50 (mAP@0.50), and mean Average Precision across IoU thresholds from 0.50 to 0.95 (mAP@0.50:0.95). As
shown in Table 2, the model achieved 99.15% mAP@0.50 and 85.14% mAP@0.50:0.95. Specifically, mAP@0.50
refers to the mean of the Average Precision (AP) values calculated for all categories when the IoU threshold is set
to 0.50, while mAP@0.50 - 0.95 represents the average mAP when the IoU threshold varies from 0.50 to 0.95.
The formulas for calculating these performance metrics are as follows:

Ntp
Ntp + Npp

__ Nrp
Ntp + NN

PA=J, P(t)dt

N
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N

mAP=

Where: Npp represents the number of correctly recognized positive samples; Nyy represents the number of
correctly recognized negative samples; Ngp represents the number of negative samples misclassified as positive
samples; Ngy represents the number of positive samples misclassified as negative samples; and N represents the
total number of samples across all images.

Table 2: Performance Metrics
Model P(%) R(%) mAP@50(%) mAP@50: 95(%)
YOLOvVS 98.63 98.21 99.15 85.14

3.2.2 Model Training

From the variation trends of various metrics during the model training process (as shown in Figure 1), the box loss,
classification loss (cls loss), and distribution focal loss (dfl loss) on both the training and validation sets decreased
steadily. This indicates that the model's fitting ability in terms of bounding box regression and category
discrimination was continuously enhanced. Meanwhile, the precision and recall metrics increased rapidly in the
early stage of training and tended to stabilize at a high level in the later stage, demonstrating that the model
possessed excellent detection precision and recall capabilities. In addition, the two metrics of mAP@0.5 and
mAP@0.95 also continued to rise, eventually approaching 1.0 and 0.85 respectively. This reflects that the model
exhibited strong detection performance across all categories and different IoU thresholds. The overall training
process was stable without overfitting, indicating that the model performed excellently on the constructed dataset.
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Figure 1: Training Result Graph
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3.2.3 Confusion Matrix

The confusion matrix demonstrates the classification performance of the model on seven categories of targets
(including six types of ships and the background). As can be seen from Figure 2, the model achieved good
recognition results for most categories. For example, "ore carriers" were correctly identified 203 times, with only
a small number of them incorrectly classified as "background"; "fishing boats" were correctly identified 175 times,
but there were still cases where they were misclassified as "background".
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Figure 2: Schematic Diagram of the Confusion Matrix

3.2.4 Visualization Analysis

In ship detection tasks, the application effect of the YOLOvS model can be intuitively presented through detection
result graphs. As shown in Figure 3, it can be observed that the model can detect and identify the types of ships in
actual scenarios, and mark them with bounding boxes of different colors.

The visualization results in Figure 3 allow observers to directly judge two core aspects: first, whether the model
accurately identifies ship targets; second, whether the positions of the detection boxes generated by the model are
accurate. Based on the detection results presented in this figure, researchers can further analyze the reasons for the
model's false detection and missed detection issues, and use this as a basis to carry out targeted model improvement
work, such as adjusting model parameters and optimizing the network structure. In addition, this figure can also
be used to intuitively demonstrate the application effect of the YOLOvV8 model in ship detection to non-
professional personnel.
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Figure 3: Ship Detection Visualization Diagram

4. CONCLUSION

This paper constructed a YOLOVS8-based ship target detection model and validated it on the SeaShips dataset.
Experimental results showed the model achieved 99.15% mAP@0.50 and 85.14% mAP@0.50:0.95, providing
reliable technical support for intelligent maritime, smart shipping, and port supervision applications.

However, limitations remain. The study was based on a single public dataset, lacking validation across datasets
and real-world scenarios. Additionally, under extreme weather, small target detection, and dense ship scenes, some
false detections and missed detections persist. With the continuous development of deep learning and multi-source
data fusion technologies, future ship detection systems are expected to achieve higher accuracy, lower latency, and
broader applicability, offering stronger technical guarantees for maritime safety and efficient management.
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