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Abstract: To enhance the emotion recognition ability of preschool education dialogue robots, this paper proposes a 

multimodal fusion model based on the cross-modal Transformer architecture. The model consists of feature extraction, 

fusion, and output layers. It extracts multi-source data through BERT, audio via AFEU units, and OpenFace toolkit. The 

multi-head self-attention mechanism is introduced to obtain high-level features, with text as an auxiliary and audio-video 

as the main modalities. The improved cross-modal Transformer and AVFSM module are used to fuse features and achieve 

emotion recognition. Experiments show that in the CH-SIMS and self-built Tea datasets, the model outperforms the baseline 

model in classification and regression metrics, verifying the effectiveness of each component. It has good robustness and 

generalization ability, and has a good application prospect in preschool education and other fields. 

 

Keywords: Emotion analysis of young children; Cross-modal Transformer architecture; Multi-head self-attention mechanism; 

Multi-modal fusion.  

 

1. INTRODUCTION 
 

With the continuous evolution of intelligent technologies, educational informatization has become a frontier 

hotspot in research and practice. As a typical representative of intelligent technology, conversational robots have 

been widely applied in many fields such as medical services and home services. Human-machine emotional 

interaction, as a core function of intelligent service robots, is crucial to enhancing the interaction experience with 

its recognition accuracy. Current research on robot emotion recognition is mainly based on convolutional neural 

networks; Specific research focuses on single-modal emotion classification and prediction, such as emotion 

recognition based on text information, image emotion recognition, speech emotion recognition, and emotion 

recognition based on ECG physiological signals, etc. Although a single recognition method helps robots 

understand human emotions, it has limitations such as a high rate of misjudgment. For this purpose, this study 

takes the preschool education dialogue robot as the carrier, introduces multimodal fusion based on the cross-modal 

Transformer architecture on the basis of existing research, and introduces the multi-head self-attention mechanism, 

combined with the results of expression emotion recognition and continuous speech emotion recognition, aiming 

to improve the preschool education dialogue robot’s ability to recognize children’s emotions. 

 

2. ARCHITECTURE OF THE MODEL  
 

The Architecture of the model is shown in Figure 1. From bottom to top, the model consists of the feature extraction 

layer, the fusion layer, and the output layer. First, text, audio, and visual features are extracted respectively through 

different feature extraction methods. After obtaining the low-level features of these three, input them into the 

multi-head self-attention mechanism to extract the high-level features. The attention mechanism is composed of 

three weight matrices Q, K, and V. In the multimodal feature fusion stage, the K and V matrices are provided by 

text modality as the auxiliary modality, and the query vector Q is provided by audio and visual modality as the 

main modality. Through the cross-modal attention mechanism, the output is residually connected to the high-level 

features obtained by the multi-head self-attention mechanism. The T-A and T-V fusion features for high-level text 

feature fusion are obtained, while for Audio and video feature fusion, the Audio and video feature sense module 

(AVFSM) proposed in this paper is used for fusion to obtain A-V fusion features. The three fused features are 

concatenated by dimension and then input into the soft attention mechanism layer for feature selection. Finally, 

the results are fed into the fully connected layer for classification prediction. 
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Figure 1: Overall architecture diagram of the model based on cross-modal Transformer fusion 

3. THREE-MODAL FEATURE EXTRACTION 
 

3.1 Text Sentiment Modal Feature Extraction Based on BERT Model 

 

For text sentiment features, we use the pre-trained model BERT, which consists of a bidirectional Transformer 

capable of capturing context information of the text and is widely used in tasks in the NLP field, as shown in 

Figure 2. 

 
Figure 2: Basic Structure diagram of the BERT model 

The process of extracting text features by the BERT model is shown in Figure 3. For a text of length L, after 

passing through the BERT model, the output is an LX768-dimensional feature matrix. 

 
Figure 3: Text Feature Extraction 

When using BERT to embed word vectors in sentence-level text, it maps each word fragment (token) to a 768-

73



   
              
 
       
 
       
 
       
 

WWoorrlldd JJoouurrnnaall ooff IInnnnoovvaattiioonn aanndd MMoodderernn TTecechhnnoollooggy,y, VVooll..8, Issue 8 (Aug)8, Issue 9 (Sep)
ISSN 2682-59102025

  
  

  

  

 
  

dimensional vector representation. For each word segment, it generates word embeddings, segment embeddings, 

and position embeddings. The three embedding vectors are added together to form the final input representation, 

which is then fed into the multi-layer bidirectional Transformer encoder to obtain the context information of each 

layer of words using the self-attention mechanism. Finally, vectors labeled with [CLS] are extracted to represent 

the overall features of the sentence, or average pooling is performed on each word fragment vector to generate 

sentenced global features that can be used for downstream tasks such as sentiment classification and similarity 

calculation, as shown in Figure 4. 

 
Figure 4: Word Vector Embeddings 

3.2 Audio Modal Feature Extraction Based on the Audio Feature Extraction Unit (AFEU) 

 

Accurate extraction of audio features is particularly important for multimodal affective analysis of young children. 

However, most of the existing audio feature extraction methods rely on a single feature (such as MEL frequency 

cepstral coefficients MFCC), making it difficult to fully characterize the audio emotional features. Therefore, in 

order to extract richer and finer acoustic Feature representations, this paper proposes an Audio Feature Extraction 

Unit (AFEU) whose structure is shown in Figure 5. The unit takes into account spectrogram features, prosodic 

features, sound quality features, and the widely used MFCC features, aiming to extract rich audio affective features. 

 
Figure 5: Audio Feature Extraction Unit (AFEU) 

Feature extraction of audio spectrograms using the AlexNet network to mine deep information in the frequency 
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domain; The LSTM network was used to model the MFCC features and capture their temporal information. Extract 

prosodic features using the Librosa tool; Finally, the above features are fused across modal Transformers, and the 

fused features are feature-level fused with the first two original features to obtain the final audio sentiment feature 

representation. 

 

3.3 Visual Modal Feature Extraction Based on OpenFace 

 

For the visual modality, this paper uses the OpenFace2.2.0 toolkit to extract information such as facial action units, 

heads, gaze directions, etc., to obtain the facial features of the video. The core idea is to perform facial detection 

on each frame of the video, mark the facial area, and identify 68 facial marker points. The 2D and 3D coordinates 

of each marker are 136 dimensions (68 points * 2D) and 204 dimensions (68 points * 3D), respectively. Extract 

17 AUs intensities (from 0 to 5) and 18 AUs existences (0 for absence, 1 for presence) for a total of 35 dimensions 

from the facial action unit. In the head orientation estimation, the three rotation angles of the head (Pitch, Yaw, 

Roll) and the head translation vector (x,y,z) were estimated for a total of 6 dimensions. Finally, the gaze direction 

includes a total of 2 dimensions of horizontal and vertical angles, and the gaze Angle data for the left and right 

eyes is usually 6 dimensions. Ultimately, multiple facial features are obtained, with a total of 389 dimensions. 

Figure 6 shows the facial features extracted by Open Face. 

 
Figure 6: Teacher facial feature data 

Suppose there are N videos in total, and each video contains n segments, then the i-th video can be represented as. 

Vi={Vi1，Vi2，⋯ Vin} The text, audio, and video of the JTH segment in the i-th video are passed into their 

respective feature extraction modules to obtain the corresponding text feature representation, speech feature 

representation, and video feature representation. Xij
TXij

AXij
V As shown in Formula (1).  

 Xi
m=[Xi1

m,Xi2
m,⋯,X

in
m]∈RLi×di

m

 (1) 

Here, T represents the text mode, A represents the audio mode, and V represents the video mode; m∈ {T,A,V}Li 

Represents the number of segments in the i-th video, di
m

 and represents the feature dimensions of each mode in the 

i-th video. 

 

4. MULTI-HEAD SELF-ATTENTION MECHANISM 
 

After extracting the low-level features of the three modalities by their respective methods, the low-level features 

of each modality are modeled using the multi-head Self-attention mechanism (MSAM) to capture context-related 

information and obtain rich high-level feature information. In the case of the text modality, the text feature 

representation of the i-th video is input into the multi-head Xi
T Transformer to learn the internal representation of 

the modality, as shown in equations (2) and (3). 

 Q
T
=Xi

TWQ, KT=Xi
TWK, VT=Xi

TWV (2) 

 Attention(Q
T
,KT,VT)=Softmax (

QTKT
T

√dk
) VT (3) 
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Where is the √dkdk dimension scaling factor, which is used to prevent the gradient from vanishing or exploding 

due to an overly large dot product value, and the corresponding linear transformation weight matrix is the 

dimension size. WQ∈Rdi
T

×dk, WK∈Rdi
T

×dk, WV∈Rdi
T

×dvXi
Tdi

T
=dk=dv 

 headh=Attention(Q
T
Wh

Q
,KTWh

K,VTWh
V) (4) 

 MultiHead(Q
T
,KT,VT)=Concat(head1,head2,⋯,head

h
)Wh

O (5) 

Where h is the number of attention heads, is the linear transformation weight matrix of the text features of the 

multi-head self-attention, is the dimension of each head. Wh
O∈Rhdv×di

T

dk
h
=dv

h
=

di
T

h
⁄  

 

After the low-level features enter the multi-head Transformer, the internal relation vector representation of the text 

mode is obtained through residual connection and layer normalization operations, and then the extracted relation 

vector is subjected to nonlinear transformation through the feedforward Neural Network (FNN) composed of linear 

layers. To enhance the feature representation ability. Finally, the final high-level text feature representation is 

obtained again through residual concatenation and layer normalization Xi
T̃. Xi

Ã,Xi
Ṽ In the same way, high-level 

audio and video features can be obtained. 

 

5. CROSS-TEXT MODAL FUSION BASED ON THE ATTENTION MECHANISM 
 

How to effectively fuse multimodal features has always been a challenge in the field of multimodal sentiment 

analysis. With the emergence of attention mechanisms, some researchers have significantly improved the 

performance of their models by introducing them. The Transformer is implemented based on the attention 

mechanism, which can capture global context relationships and strengthen the internal structure of the modality, 

enhancing the ability to aggregate information. Studies have shown that the sentiment classification of text 

modalities often outperforms that of audio and video modalities [13,14]. To reduce the complexity of the model, 

in the cross-modal interaction part, this paper uses text modality to assist audio and video modality for modeling, 

and enhances the fusion effect through improved cross-modal attention. 

 
Figure 7: An improved structure diagram based on the cross-modal Transformer 

Figure 7 shows the improved Cross-modal Transformer (CMT) structure. After extracting rich high-level features 

from low-level features through the multi-head self-attention mechanism, the high-level audio features and high-

level text features are layer-normalized to provide matrices with high-level text features as auxiliary modalities 

and Q query vectors with high-level audio modalities as primary modalities for feature sharing through the multi-

head self-attention mechanism. Xi
T,Xi

A,Xi
VXi

ÃXi
T̃KT,V

T
 The calculation process of the cross-modal Transformer is 

as shown in formula (6):  

 CMTT→A=Softmax (
QA KT

T

√dk
) VT=Softmax (

Xi
Ã

WQAWKT
T

Xi
TT̃

√dk
) Xi

T̃WVT (6) 
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Among them WQA∈Rdi
A

×dk , they are respectively the linear transformation weight matrices. 

WKT∈Rdi
T

×dkWVT∈Rdi
T

×dv 

 

After passing through the cross-modal Transformer, consistent with the multi-head self-attention mechanism, text-

audio fusion features are obtained using residual connections and layer normalization operations, and then through 

the feedforward neural network, the model learns the interaction information of the two modalities. Xi
T→A Finally, 

the output results of high-level text-audio features of cross-text modal fusion are obtained. 

 

Because pooling operations have the advantages of suppressing noise, reducing redundant information, and 

preventing overfitting, combinatorial pooling is used at the cross-modal output end. Xi
T→A The high-level text-

audio features obtained through text-assisted modal fusion are input into the maximum and average pooling layers. 

The maximum pooling captures local features, and the average pooling captures global features. Finally, the two 

pooling results are concatenated by dimension to obtain the final high-level text-audio feature output result of 

cross-text modal fusion, Zi
T→A as follows: 

 

 Xi_max
T→A =MaxPooling(Xi

T→A) (7) 

 Xi_avg
T→A=AvgPooling(Xi

T→A) (8) 

 Zi
T→A=Concat(Xi_max

T→A , Xi_avg
T→A) (9) 

In the same way, a representation of the high-level text-video feature vectors after fusing the text feature 

information can be obtained. Zi
T→V 

 

As shown in Equations (10) and (11), the input high-level audio and video features are concatenated with their 

corresponding cross-text modal fusion features to obtain the final output Zi
TÃ,Zi

TṼ. Enhance the retention and 

transmission of single-modal internal information and achieve full fusion of single-modal and cross-modal 

information. 

 Zi
TÃ=Concat (Xi

Ã，Zi
T→A) (10) 

 Zi
TṼ=Concat (Xi

Ṽ，Zi
T→V) (11) 

In sentiment analysis, audio and video features play an important role, and the fusion process is often affected by 

data quality, environmental noise, and the imbalance of information between modalities, making it difficult for the 

model to extract useful information. In order to fuse Audio and video features more effectively, this paper 

introduces the Audio and video feature sense module (AVFSM) aimed at alleviating the imbalance of modal 

information and enhancing the expressive power and fusion effect of audio and video features. 

 
Figure 8: Audio and Video Feature Enhancement Module (AVFSM) 
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As shown in Figure 8, the working process is described as follows: High-level audio and video features extracted 

by multi-head self-attention are encoded into modal internal features respectively through ReLU activation 

functions to optimize single-modal features and improve the representational ability of audio and video features. 

To extract local and global information and enhance low-quality modal information, residual concatenation is 

performed to obtain intermediate features and Gi
AGi

V . Information compensation is then achieved Sigmoidby 

adaptively adjusting the proportion of audio and video features. Finally Zi
AṼ, A multi-layer perceptron (MLP) is 

used to obtain fused audio and video A-V features to enhance audio and video synergy. The formula for the audio-

video feature fusion mechanism is as follows: 

 Gi
A=ReLU (Xi

Ã)  + Xi
Ã (12) 

 Gi
V=ReLU (Xi

Ṽ)  + Xi
Ṽ (13) 

 Wg =Sigmoid (Concat(Gi
A ,Gi

V)) (14) 

 ω=Gi
A* Wg+ Gi

V*(1-Wg ) (15) 

 Zi
AṼ=MLP (ω* Xi

Ṽ) (16) 

In the formula: is the high-level audio feature, is the high-level video feature, is the output feature after fusion. 

Xi
Ãϵ RLi×di

A

 Xi
Ṽϵ RLi×di

V

 Zi
AṼϵ RLi×di

AV

 

 

Finally, the three fused modal features are concatenated together as the final multimodal feature representation, as 

shown in formula (17). Zi
 ⃖   

 Zi
 ⃖  =Concat (Zi

TÃ,Zi
TṼ,Zi

AṼ) (17) 

6. EXPERIMENTS AND RESULTS ANALYSIS 
 

This section verifies the effectiveness of the model proposed in this paper by conducting comparative experiments 

on the CH-SIMS dataset. The experimental environment configuration, hyperparameter Settings, evaluation 

metrics, baseline model, etc. are included, and the results of the comparison experiments and ablation experiments 

are analyzed in detail. 

 

6.1 Evaluation Indicators 

 

For performance evaluation of multimodal sentiment analysis models, the evaluation metrics are set based on 

different types of output data of the model. It mainly consists of two tasks: classification and regression. For the 

classification task, the model’s output is the sentiment category. Therefore, 2-classification (negative/non-negative) 

accuracy (Acc-2), 3-classification (positive, negative, neutral) accuracy (Acc-3), and 2-classification weighted F1 

score are used as metrics to evaluate the model’ s classification performance. The formula for accuracy is as 

follows: 

 Acc = 
TP+TN

TP+TN+FP+FN
 (21) 

F1 Score is also a type of classification metric, with values ranging from [0,1]. The larger the F1 value, the stronger 

the classification ability of the model. The specific calculation formula is as follows: 

 F1=
2∙TP

2∙TP+FN+FP
 (22) 

For regression tasks, the model ‘s output is a numerical representation of sentiment polarity, so mean absolute 

error (MAE) and Pearson correlation coefficient (Corr) are used as evaluation metrics. The smaller the MAE value, 

the more accurate the model’ s prediction. The specific formula is as follows: 

 MAE=
1

n
∑ |y

i
-ŷ

i
|n

i=1  (23) 

The Pearson Correlation Coefficient (Corr) [70] is typically used as a statistical indicator to evaluate the correlation 

between predicted values and true values. Its value range is [-1,1]. A value close to +1 indicates a strong positive 

correlation, and a value close to -1 indicates a strong negative correlation. A close to 0 indicates no significant 

78



 
                                                                                                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

World Journal of Innovation and Modern Technology, Vol. 8, Issue 8 (Aug)World Journal of Innovation and Modern Technology, Vol. 8, Issue 9 (Sep) 
ISSN 2682-5910 2025  

  
  

  

  

 
  

linear relationship. The specific formula is as follows: 

 Corr=
∑ (xi-x̅)(yi-y̅)n

i=1

√∑ (xi-x̅)
2n

i=1 ∑ (yi-y̅)
2n

i=1

 (24) 

Here, and are the values of two variables in the data sample, which are respectively the mean values of the variables 

x and y: xiyi
x̅,y̅ 

 x̅=
1

n
∑ xi

n
i=1 , y̅=

1

n
∑ y

i
n
i=1  (25) 

6.2 Experimental Setup and Dataset 

 

The experiment was run on an 11-core PC server with Ubuntu 20.04 as the system version, NVIDIA-GeForce-

RTX-4090 as the GPU, and the software configuration included deep learning frameworks PyTorch, Python, 

CUDA, etc. And appropriate hyperparameters were set for different modules. 

 

To verify the validity of the model, experiments were conducted using the CH-SIMS public dataset and the self-

made Tea dataset, the former being a Chinese multimodal sentiment dataset created by Tsinghua University, for 

details see Table 2.3; The latter is a self-made multimodal emotion dataset for young children in real-world 

scenarios. The partitioning for the CH-SIMS and homemade Tea datasets is shown in Table 1. 

Table 1: Partitioning of Experimental Datasets 

Categories CH-SIMS Self-built -Tea dataset 

Total 
Training Set Validation set Test Set Training Set Validation set Test Set 

1368 456 457 909 113 115 

Positive emotion 419 139 140 228 29 30 

Neutral emotions 207 69 69 564 58 59 

Negative emotions 742 248 248 117 26 26 

 

6.3 Comparing methods and Results 

 

The experiment selected classic multimodal sentiment analysis models such as TFN, LMFMFM, MulT, MTFN, 

MLMF, and Self-MM, as well as cross-modal Transformer fusion models as benchmarks to verify the performance 

of the proposed models. 

 

6.3.1 Comparative experiments on public datasets 

 

As shown in Table 2, the experimental results of the model on the CH-SIMS dataset show that, compared with 

other model methods, the model proposed in this paper has significant improvements in F1 scores, Acc-2, and 

Acc-3. Compared with the tensor fusion network (TFN) model, the model in this paper improved the Acc-2 and 

F1 scores by 3.98 and 3.52 percentage points respectively. TFN has to perform tensor outer product operations 

when fusing different modalities, with many model parameters, a large amount of computation and a long training 

time. Therefore, in this paper, combinatorial pooling is used for the final cross-modal output to obtain high-quality 

fusion features. Compared with the Transformer-based fusion model MulT, the model in this paper also achieved 

better results. The audio feature extraction unit (AFEU) proposed in this paper, compared with the single MFCC 

feature, can mine richer and more detailed feature representations of audio features. In addition, By proposing the 

Audio and Video Feature Enhancement module (AVFSM), important audio and video fusion features can be 

selected based on weights during the fusion stage to improve the quality of audio and video features. 

Table 2: Comparison results on the CH-SIMS dataset 

Model Acc-2 ↑ Acc-3 ↑ F1 ↑ MAE ↓ Corr ↑ 

TFN) 78.38 65.12 78.62 0.432 0.591 

LMF) 77.77 64.68 77.88 0.441 0.576 

MFN 77.90 65.73 77.88 0.435 0.582 

MulT 78.56 64.77 79.66 0.453 0.564 

MTFN 81.09 68.80 81.01 0.395 0.666 

MLMF 79.34 68.36 79.07 0.409 0.639 

Self-MM 80.04 65.47 80.44 0.425 0.595 

Ours 82.36 69.77 82.14 0.401 0.692 
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6.3.2 Ablation experiment 

 

To verify the effectiveness of the components presented in this paper, ablation experiments were conducted on the 

model on the CH-SIMS dataset, and the results are shown in Table 3. The impact of each part on the overall 

performance of the model is mainly explored in two aspects: one is the selection of different modes; The second 

is to analyze the extent to which each module contributes. The details are as follows: 

 

1) V: Retain the complete model architecture, use text and audio as the primary modalities when fusing across 

modalities, and provide the Q matrix; Video is an auxiliary mode, providing K and V matrices.  

 

2) A: Retain the complete model architecture and use text and video as the primary modality and audio as the 

secondary modality when fusing across modalities. 

 

3) r/a AFEU: Remove the audio feature extraction module from the full model architecture and use the traditional 

single MEL frequency cepstral coefficients (MFCC) feature as the audio feature input. 

 

4) r/a MSAM: Remove the multi-head self-attention mechanism from the full model architecture and directly use 

the low-level features extracted by each module as cross-modal input. 

 

5) r/a CMT: Remove the improved cross-modal Transformer from the complete model architecture and directly 

concatenate the modal features after passing through the multi-head self-attention machine and send them to the 

soft attention mechanism layer. 

 

6) r/a MP_AP: Remove the combinatorial pooling layer from the cross-modal Transformer module. 

 

7) r/a AVFSM: Remove the audio and video feature enhancement module on the full model architecture. 

 

8) r/a Soft-Attention: Remove Soft attention from the full model architecture and feed vectors concatenated 

through multi-head self-attention and cross-modal Transformer directly into the fully connected layer. 

Table 3: Ablation Experiment Results on CH-SIMS 

Item Method Acc-2 ↑ Acc-3 ↑ F1 ↑ MAE ↓ Corr ↑ 

1 V 80.46 67.22 79.84 0.437 0.574 

2 A 80.90 67.47 79.91 0.435 0.588 

3 r/a AFEU 80.71 66.98 80.12 0.429 0.655 

4 r/a MSAM 81.45 68.60 80.79 0.415 0.670 

5 r/a CMT 79.18 65.96 79.96 0.446 0.565 

6 r/a MP_AP 81.99 68.76 81.07 0.424 0.611 

7 r/a AVFSM 80.57 67.08 79.88 0.445 0.590 

8 r/a Soft-attention 81.35 68.03 80.56 0.411 0.667 

9 Ours 82.36 69.77 82.14 0.401 0.692 

 

As can be seen from the experimental results in Table 3, all indicators decreased significantly after the components 

were removed. Analysis of Experiments 1, 2 and 9 shows that the model performs best when the text mode is used 

as the auxiliary mode and audio and video as the main mode. 

 

Analysis of Experiments 3 and 9 revealed that after the removal of the audio feature extraction unit, the Acc-2 and 

Acc-3 of the model decreased to 1.65% and 2.79% respectively. The introduction of the audio feature extraction 

unit can enhance the model’s ability to extract acoustic features. 

 

Analysis of Experiments 5, 6, and 9 shows that after removing the cross-modal Transformer, the performance 

degradation of the model is the greatest, which is 3.18%, 3.81%, 2.18%, -0.045%, and 0.127% respectively in 

table order. This indicates that the cross-modal Transformer is crucial to the model. 

 

Analysis of Experiments 7, 8, and 9 shows that the performance of the model declined after removing the Audio 

and Video Feature Enhancement module (AVFSM) and the soft attention layer, indicating that these two modules 

also contributed to the improvement of the model’s performance. 
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The complete model achieved optimal performance on all metrics, verifying the effectiveness of the components 

in the model proposed in this paper. The modules complement each other and jointly enhance the multimodal 

sentiment analysis ability of the model. 

 

6.3.3 Comparative experiments on self-built datasets 

 

To verify the effectiveness of the self-built dataset and to evaluate the robustness and generalization ability of the 

model proposed in this paper in the classroom scenario, comparative experiments were conducted using the self-

built dataset on five classic baseline models. The results are shown in Table 4. 

Table 4: Comparative experiments on the self-built Tea dataset with the benchmark model 

Model Acc-2 ↑ Acc-3 ↑ F1 ↑ MAE ↓ Corr ↑ 

TFN 72.45 56.14 71.58 0.593 0.604 

LMF 73.38 57.27 72.04 0.589 0.599 

MFM 73.32 57.65 72.55 0.577 0.584 

MulT 72.88 57.43 71.90 0.592 0.581 

Self-MM 74.06 58.21 73.12 0.564 0.622 

Ours 76.40 60.66 76.51 0.488 0.676 

 

As shown in the table above, comparative experiments were conducted on the self-built dataset in this paper, and 

the results were consistent with those on the CH-SIMS model. Compared with several other major baseline models, 

the model in this paper achieved good performance in all metrics on the self-built dataset. 

 

7. CONCLUSION 
 

To sum up, the cross-modal Transformer architecture with multi-head self-attention mechanism has good 

performance in multimodal fusion, resulting in more accurate recognition results. At the same time, the recognition 

results are more comprehensive and reliable, showing relatively excellent robustness and generalization ability, 

and can be applied to the recognition of children’s emotions in the actual preschool education process. Further 

enhance the teaching effect. But there are certain limitations, such as the multiple physiological and psychological 

manifestations of emotional expression, so the next step of research will expand the modal types of multimodal 

emotion recognition to further enhance the comprehensiveness of recognition results. 
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