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Abstract: To address the challenge of assessing carbon emissions in the iron ore sintering process, characterized by 

dynamic complexity, strong temporal correlations, and multi-stage coupling, this study innovatively introduces the Hidden 

Markov Model (HMM) into the field of carbon emission analysis. We propose a method for process stage identification and 

carbon emission modeling based on a Gaussian Hidden Markov Model (Gaussian HMM). The model defines the four stages 

of the sintering process as hidden states and uses six-dimensional flue gas monitoring data (temperature, SO2 concentration, 

NO concentration, NOx concentration, O2 content, CO concentration) as the observation sequence, with Gaussian 

distributions describing the emission characteristics of each stage. The research employs the Random Forest algorithm to 

impute missing values and correct outliers in the raw data, followed by standardization to eliminate scale differences. Model 

parameters are initialized using Maximum Likelihood Estimation (MLE) and iteratively optimized via the Forward-

Backward and Baum-Welch algorithms to enhance the model's fitting capability for complex temporal data. The Viterbi 

algorithm dynamically decodes the hidden state sequence, enabling an online "predict-until-cooling" monitoring strategy. 

This strategy accurately determines the optimal cooling timing to balance combustion efficiency with the reaction endpoint. 

This approach prevents incomplete iron ore combustion and low raw material utilization, while simultaneously reducing 

emissions of harmful gases and greenhouse gases, thereby achieving the goal of lowering carbon emissions. It provides 

technical support for the refined management of carbon emissions. 

 

Keywords: Hidden Markov Model; Carbon Emissions; Forward–Backward Algorithm; Baum–Welch Algorithm; Viterbi 

Algorithm.  

 

1. INTRODUCTION 
 

On September 22, 2020, General Secretary Xi Jinping delivered a speech during the General Debate of the 75th 

Session of the United Nations General Assembly, in which he clearly stated China’s strategic goal of “enhancing 

its nationally determined contributions, adopting more forceful policies and measures, striving to peak carbon 

dioxide emissions before 2030, and making all-out efforts to achieve carbon neutrality before 2060.” According 

to data released by the World Steel Association, in 2023 global crude steel production reached 1.8882 billion 

tonnes, of which China’s output was 1.0191 billion tonnes—accounting for over 50 percent of the world total [1]. 

From an industry-structure perspective, the steel sector ranks first in carbon emissions among the 31 detailed 

subdivisions of manufacturing, contributing approximately 15 percent of China’s total emissions. As a key 

emissions-intensive sector, the green and low-carbon transformation of the steel industry has become imperative. 

Within steelmaking processes, sintering represents the second-largest energy-consuming operation and bears a 

significant share of total carbon emissions; therefore, controlling emissions from the sintering process is directly 

linked to steel enterprises’ progress toward their reduction targets. 

 

Iron-ore sintering is the principal source of gaseous pollutant emissions in the steel-making process. Its emissions 

of particulate matter, SO₂, NOₓ, and CO account for approximately 20 percent, 70 percent, 48 percent, and 36.06 

percent, respectively, of total gaseous emissions in the steel industry [2]. In April 2019, the Ministry of Ecology 

and Environment, together with other ministries, issued the “Opinions on Promoting Ultra-Low Emissions in the 

Steel Industry” (Huan Daqi [2019] No. 35), which stipulate that emissions of particulate matter, SO₂, NOₓ, and 

dioxins in the sinter machine hood flue gas must not exceed 10 mg/m³, 35 mg/m³, 50 mg/m³, and 0.5 ng/m³, 

respectively [3]. Although, in key regions, steel enterprises have now attained these ultra-low emission standards 

for particulate matter, SO₂, and NOₓ—with pollutant emission intensities decreasing year by year—the inherent 

characteristics of sinter flue gas and the process itself result in an initial CO concentration (calculated on an 8 000 

mg/m³ basis) that is roughly 800 times, 228 times, and 160 times higher than the ultra-low emission limits for 

particulate matter, SO₂, and NOₓ, respectively [4], leading to massive CO releases. Related studies confirm that 

carbon monoxide, as a highly toxic gas, poses multiple health hazards. Its toxic effects not only directly impair 

cardiovascular and respiratory function but, under sunlight, CO also engages in complex photochemical reactions 

with non-methane hydrocarbons (NMHC) and nitrogen oxides (NOₓ) in the atmosphere to produce photochemical 
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smog dominated by ozone. This secondary pollutant not only causes crop yield reductions and accelerated 

corrosion of building materials but also induces acute eye and respiratory irritation in humans, which in severe 

cases can be life-threatening. 

 

2. SINTERING PROCESS FLOW 
 

Iron-ore sintering is a thermal agglomeration process in which iron ore fines, recovered iron-making by-products, 

fluxing agents, slag conditioners and solid fuel (coke) are blended, ignited on a sintering strand and ultimately 

fused into clinker-sized agglomerates [5]. The feedstock typically comprises beneficiated concentrate from low-

grade ores, crushed fines of high-grade ores and iron-bearing recycled materials (e.g. blast‐furnace and converter 

dust, rolling-mill scale), combined with fluxes such as limestone and dolomite, and fuels like coke breeze or 

anthracite. After precise proportioning, mixing and granulation to form a homogeneous charge, the material is 

evenly distributed onto the strand by a feed system. Ignition followed by negative-pressure suction then initiates 

high-temperature solidification. 

 

During sintering, multiple coupled multiphase reactions occur. As preheated air penetrates the hot bed, the 

combustion zone reaches 1250–1500°C, driving intense oxidation of the solid fuel and releasing the thermal energy 

required for agglomeration. The descending flue gas then passes sequentially through the drying layer (200–

400 °C), evaporating free moisture, and the preheating layer (400–800°C), decomposing carbonates and reducing 

iron oxides. Concurrently, CaO, SiO₂ and other oxides undergo solid–liquid reactions in the combustion zone to 

form complex mineral phases, while impurities such as sulfur and arsenic are oxidized and captured in the molten 

flux. Finally, the liquid phase cools under a temperature gradient, creating an interwoven mineral structure and 

yielding high-strength sinter. 

 

In contemporary production, belt-type suction sinter machines dominate. Modern belt-type sintering integrates 

raw-material pretreatment (optimizing fuel granularity), enhanced granulation and hot-flue-gas recycling. These 

advancements reduce solid-fuel consumption and achieve coordinated control of pollutants, propelling sinter 

production toward a low-carbon, high-efficiency paradigm. 

 
Figure 1: Simulation of belt exhaust sintering machine 

In the belt-type suction sintering process, operation proceeds from top to bottom through the depth of the sinter 

bed, which is conventionally subdivided into five strata—beginning with the sinter layer at the top, followed by 

the combustion zone, the drying-and-preheating zone, the over-wet layer and, finally, the raw-material layer at the 

bottom. As sintering advances, the latter four zones successively disappear, leaving only the consolidated sinter 

layer as the finished product. Within this bed, coke particles are dispersed irregularly and burn in a manner 

intermediate between that of isolated pellets and a cohesive coke bed, characterizing a heterogeneous reaction 

system. Throughout the sintering cycle, five distinct reaction pathways overlap and interact [6]: 

 (2𝐶 + 𝑂2 = 2𝐶𝑂2 Δ𝐺Θ = −395350 − 0.54𝑇 (1) 

 (2𝐶 + 𝑂2 = 2𝐶𝑂 Δ𝐺Θ = −228800 − 171.54𝑇 (2) 

 (2𝐶𝑂 + 𝑂2 = 2𝐶𝑂2 Δ𝐺Θ = −561900 + 170.46𝑇 (3) 

 (𝐶𝑂2 + 𝐶 = 2𝐶𝑂 Δ𝐺Θ = 166550 − 171.00𝑇 (4) 
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 (𝐶 + 𝐻2𝑂 = 𝐶𝑂 + 𝐻2 Δ𝐺Θ = 31378 − 31.971𝑇 (5) 

Because each reaction has a different Gibbs free energy at varying temperatures, the duration and intensity of these 

reactions likewise differ significantly. Under the driving force of negative-pressure suction, oxygen-laden gas 

streams penetrate the sinter bed from top to bottom, following gas–solid two-phase convective mass-transfer laws. 

When oxygen reacts with coke at the particle surface, a gaseous boundary layer forms at the reaction interface, 

severely limiting both the efficiency of O₂ transport to the surface and the back-diffusion of reaction products 

(CO/CO₂). Consequently, the kinetics of carbon combustion are governed not only by the combustion temperature 

but also by the diffusion rate of O₂ toward the reaction front and the reverse diffusion efficiency of CO₂—

parameters that are intrinsically coupled to the bed’s permeability characteristics and the applied gas-flow velocity. 

 

Moreover, variations in raw‐material composition exert a pronounced influence on these reaction pathways. When 

the sulfur content of the feed is elevated, accelerated decomposition of sulfides in the high-temperature zone causes 

a sharp rise in SO₂ formation; this necessitates optimizing thermal-engineering parameters to shorten residence 

time in the hottest region and thereby suppress sulfur oxidation. Conversely, carbon-rich fuels require an expanded 

combustion zone width to ensure complete coke oxidation, minimizing the risk of residual CO from incomplete 

combustion. It is important to note that, although intensified suction can improve sintering efficiency, excessively 

high gas-flow rates reduce the oxidation time available to fuel particles—allowing unburnt CO to entrain rapidly 

into the off-gas stream and, in effect, exacerbate CO fugitive emissions. 

 
Figure 2: CO concentration and exhaust gas temperature vary with process stage 

By correlating CO concentration with flue-gas temperature, the sintering process can be divided into four stages: 

preheating, combustion, sintering, and cooling. During preheating, the over-wet layer keeps temperatures 

relatively low. As ignition initiates, the combustion zone and drying-preheating zone gradually develop and 

thicken, intensifying carbon combustion and generating increasing volumes of CO. Consequently, the CO mass 

concentration rises sharply to a pronounced peak. Once ignition ends, a surge of air drawn in by negative-pressure 

suction strengthens the oxidizing atmosphere, driving more complete carbon combustion and causing the CO 

concentration to plunge. As suction sintering continues, an increasing fraction of the bed softens and melts, 

thickening the over-wet layer, which in turn impairs bed permeability and weakens oxidation. Incomplete 

combustion then causes CO levels to climb rapidly into a high-concentration regime. When the process reaches 

the full combustion phase, the over-wet layer vanishes and temperature spikes: the sinter layer proportion grows 

while the combustion and drying-preheating zones shrink, restoring bed permeability and oxidizing conditions so 

that carbon burns out fully and CO concentration falls precipitously. After the transition into the sintering phase, 

the combustion zone disappears altogether and CO concentrations remain low. Finally, during cooling, 

temperatures decline and CO concentrations approach zero. 

 

In sintering, “under-burning” refers to insufficient combustion that leaves raw materials incompletely reacted and 

iron minerals inadequately consolidated, resulting in low sinter strength, high pulverulence, and reduced material 

utilization. Conversely, “over-burning” arises when high temperatures persist too long or cooling lags, causing 

excessive mineral melting and lattice distortion; this not only increases energy consumption but also exacerbates 

emissions of CO, SO₂, and greenhouse gases. Accurately determining the optimal cooling point—thereby 

dynamically balancing combustion efficiency against reaction completion—prevents both under-burning and over-

burning, reduces harmful and greenhouse gas emissions, and ultimately lowers carbon output. 
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3. HIDDEN MARKOV MODEL 
 

The Hidden Markov Model (HMM) is a probabilistic modeling method based on a double stochastic process, first 

proposed by Baum, Welch and others in the mid-1970s. It constructs a temporal-data analysis framework by 

dynamically linking hidden state transitions with observable outputs, and it has since been widely applied in fields 

such as speech-signal processing, biomedical-data analysis, and industrial-system fault monitoring [7–8]. The core 

architecture of the HMM consists of two coupled stochastic processes: one is the hidden-state sequence, which 

evolves over time according to the Markov property (memoryless transitions); the other is the observation sequence, 

which maps each hidden state to measurable outputs via probability-density functions. In HMM modeling, the 

observer has access only to the explicit observation data driven by the hidden-state sequence, while the true 

sequence of state transitions must be inferred through probabilistic inversion algorithms (e.g. Viterbi decoding). 

This reverse inference of the hidden-state chain from the observation sequence constitutes the essence of the 

Hidden Markov process. To fully specify an HMM, the following symbols or variables must be defined: 

 

An HMM is represented by the triplet 𝜆 = (𝛱, 𝛢, 𝛣):  
 

𝑆 = {1,2, . . . , 𝐾}, where 𝑆 denotes the set of hidden states and 𝐾 is the total number of states. 

 

𝛱 = {𝜋𝑖}, 1 ≤ 𝑖, 𝑗 ≤ 𝐾, where 𝜋𝑖 is the probability that the initial state at time t = 1 is i. 

 

𝐴 = {𝑎𝑖𝑗}, 1 ≤ 𝑖, 𝑗 ≤ 𝐾, where 𝑎𝑖𝑗  is the probability of transitioning from state i to state j. 

 

𝐵 = {𝑏𝑖𝑗}, 1 ≤ 𝑖, 𝑗 ≤ 𝐾, where 𝑏𝑖𝑗  is the probability of emitting observation j when in hidden state i. 

 

Given an HMM 𝜆 = (𝛱, 𝛢, 𝛣), n observation sequence 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑇} and a corresponding state sequence 

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑇}, The probability of generating the observation sequence is given by: 

 𝑃(𝑂, 𝑆|𝜆) = 𝜋𝑆1 • (∏ 𝑎𝑠𝑡𝑠𝑡+1
𝑇−1
𝑡=1 ) • (∏ 𝑏𝑠𝑡(𝑜𝑡)

𝑇
𝑡=1 )  

This formula describes the probability of, under a given HMM, first generating a state sequence and then producing 

the observation sequence from those states. The HMM infers the most likely hidden‐state path and its probability 

from the observation sequence, as illustrated in the figure below: 

 
Figure 3: Conceptual diagram of the Hidden Markov model 

In the iron‐ore sintering process, the six‐dimensional observation signals—flue‐gas temperature, SO₂, NO, NOₓ, 

O₂, and CO—exhibit multimodal distributions, temporal correlations, and noise interference as the process 

progresses through its four stages (preheating → combustion → sintering → cooling). To accurately identify the 

latent operating conditions in each stage, characterize the dynamics of emissions, and provide decision support for 

carbon‐emission control, it is necessary to employ a temporal model capable both of capturing hidden‐stage 

transitions and of handling continuous, multidimensional observations. The Gaussian Hidden Markov Model 

(Gaussian HMM) is an extension of the classical HMM in which the observation‐likelihood functions are Gaussian 

(either unimodal or multimodal). In a Gaussian HMM, observations𝑏𝑗(𝑜𝑡) are no longer treated as discrete values 

but are modeled by Gaussian distributions—each hidden state 𝑠𝑗 being associated with its own Gaussian emission 

distribution:  
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 𝑏𝑗(𝑜𝑡) = 𝑁(𝑜𝑡|𝜇𝑖, ∑𝑖) =
1

√(2𝜋)𝑘|∑𝑗|
𝑒𝑥𝑝 (−

1

2
(𝑜𝑡 − 𝜇𝑗)

𝛵
𝛴𝑗
−1(𝑜𝑡 − 𝜇𝑗))  

It can capture the average emission characteristics of each stage via the mean 𝜇𝑖, and characterize the dynamic 

interdependence and uncertainty among the indicators via the covariance 𝛴𝑖. The parameter set for the Gaussian 

HMM emission distributions is: 

 𝐵 = {(𝜇𝑖 , ∑𝑖)|𝑖 = 1, . . . , 𝑛}  

Therefore, in a Gaussian HMM, the probability of generating the observation sequence𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑇} is given 

by: 

 𝑃(𝑂, 𝜆) = ∑ [𝜋𝑆1 • (∏ 𝑎𝑠𝑡𝑠𝑡+1
𝑇−1
𝑡=1 ) • (∏ 𝑁(𝑂𝑡|𝜇𝑆𝑡 , 𝛴𝑆𝑡)

𝑇
𝑡=1 )]𝑆   

4. ALGORITHM WORKFLOW 
 

In this study, a Python program was developed to read minute-level flue-gas monitoring data from the sintering 

process—including temperature, SO₂, NO, NOₓ, O₂, and CO—and to sort these observations in chronological order. 

Maximum likelihood estimation (MLE) was then used to initialize the parameters of a Gaussian HMM. Next, the 

Baum–Welch algorithm iteratively re-estimated the model parameters until the increase in log-likelihood fell 

below a preset threshold or a maximum number of iterations was reached. The trained model was then applied to 

new observation sequences: the Viterbi algorithm decoded the most likely hidden-state sequence and predicted 

each minute’s state from a specified start time until the first detection of the “cooling” stage. Finally, predictions 

were compared against true labels to generate a classification report and confusion matrix, thereby evaluating the 

model’s classification performance across the four stages (preheating, combustion, sintering, cooling) and its 

accuracy in identifying the onset of cooling. 

 
Figure 4: Algorithm flowchart 

Step1: Analyze and organize the flue-gas monitoring dataset of the sintering process to construct the initial dataset. 

 

Step2: Apply a random forest algorithm to the initial dataset to impute and correct missing and anomalous data, 

thereby improving the efficiency and accuracy of the HMM model. 

 

Step3: By analyzing the correspondence between the sintering process’s carbon-emission assessment and the 

Hidden Markov Model, treat the key stages of the sintering process (preheating, combustion, sintering, cooling) 

as hidden states in the latent layer, and use the filtered monitoring data as observable states in the observation layer. 

Then initialize the HMM’s parameters 𝜆 = (𝛱, 𝛢, 𝛣) using maximum likelihood estimation (MLE). 
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Step4: The Baum–Welch algorithm [9] is employed to iteratively estimate the mean vectors and covariance 

matrices of the Gaussian emission distributions for each hidden state by maximizing the likelihood of the observed 

data until the model parameters converge, thereby yielding the optimal Hidden Markov Model. 

 

Step5: Using the trained model and the currently available observation sequence, the next most likely observation 

is predicted via probabilistic computation, with the outcome of highest probability selected as the prediction output. 

Finally, using the optimal model parameters thus obtained and a new observation sequence V, the Viterbi algorithm 

[10] is applied to derive the optimal hidden–state sequence S, from which the cooling onset is inferred. 

 

5. EMPIRICAL STUDY 
 

5.1 Dataset Preparation 

 

5.1.1 Data Selection 

 

The data originate from sinter‐cup experiments conducted in the central laboratory of Hebei Yongyang Special 

Steel Group Co., Ltd. Three complete sintering runs were extracted from the flue‐gas monitoring system’s datasets. 

From these, six indicators—flue‐gas temperature, SO₂ concentration, NO concentration, NOₓ concentration, O₂ 

content, and CO concentration—were selected to form a new dataset. 

 

5.1.2 Data Preprocessing 

 

After imputing and correcting missing and anomalous values via a random‐forest algorithm, all features were 

standardized to the same scale to prevent high‐magnitude variables (e.g., CO concentration in mg/m³) from 

overwhelming low‐magnitude ones (e.g., O₂ content in percent). For maximum‐likelihood estimation under a 

Gaussian model, standardized features share similar distributions across dimensions, which prevents excessively 

large or small gradients, significantly accelerates algorithmic convergence, and improves numerical stability. 

Moreover, standardization brings feature variances to the same order of magnitude, making the covariance 

matrices more readily positive‐definite and comparable. 

 

5.1.3 Train–Test–Validation Split 

 

Based on CO concentration and flue‐gas temperature profiles, each of the three runs was labeled with one of four 

states—0, 1, 2, or 3—corresponding respectively to the preheating, combustion, sintering, and cooling stages. 

These labeled datasets were stored in three sheets: Sheet1, Sheet2, and Sheet3. Sheet1 was designated as the 

training set for fitting and optimizing the parameters of the Gaussian Hidden Markov Model. Sheet2 served as the 

test set to evaluate the model’s ability to correctly identify the four process stages. Sheet3 functioned as the 

validation set to verify the model’s accuracy in predicting hidden states and determining the optimal onset of the 

cooling stage. 

 

5.2 Parameter Estimation 

 

5.2.1 Initial Parameter Setting 

 

Because the Baum–Welch algorithm is highly dependent on its starting values, maximum likelihood estimation 

(MLE) is used to initialize the HMM’s parameters 𝜆 = (𝛱, 𝛢, 𝛣),  

 𝛱 = [1, 0, 0, 0]𝛵  

 𝐴 = [

0.9787 0.0213 0 0
0 0.8888 0.1112 0
0 0 0.9167 0.0833
0 0 0 1

]  

After normalization, the emission distributions 𝛣estimated by MLE—that is, the mean vectors (𝜇𝑖) and covariance 

matrices (𝛴𝑖) of the Gaussian emission distributions for each state—are as follows: 
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 𝜇0 =

(

 
 
 

−0.8353
−0.2483
0.8026
0.8097
−0.7966
0.8023 )

 
 
 
𝜇1 =

(

  
 

0.2229
2.3957
0.0819
0.0263
−0.1443
−0.0346)

  
 
𝜇2 =

(

 
 
 

1.6583
−0.1314
−1.1205
−1.1187
1.1067
−1.1108)

 
 
 
𝜇3 =

(

  
 

0.8263
−0.3958
−1.1912
−1.1842
1.2123
−1.1460)

  
 

  

 ∑0 =

(

  
 

0.001220 0 0 0 0 0
0 0.506051 0 0 0 0
0 0 0.231292 0 0 0
0 0 0 0.232077 0 0
0 0 0 0 0.222268 0
0 0 0 0 0 0.266865)

  
 

  

Denoted as: 

 𝛴0 = diag(0.001220,0.506051,0.231292,0.232077,0.222268,0.266865)  

Similarly, 

 𝛴1 = diag(0.540744,0.664762,0.317168,0.304536,0.294261,0.419682)  

 𝛴2 = diag(0.008511,0.096996,0.006034,0.005086,0.015841,0.002275)  

 𝛴3 = diag(0.161632,0.000816,0.00000049,0.00000389,0.006945,0.0000027)  

5.2.2 Parameter Optimization 

 

The Baum–Welch algorithm is an Expectation–Maximization (EM) method for estimating the parameters of an 

HMM. When the model parameters (initial‐state distribution, state‐transition matrix, and emission matrix) are 

unknown, the Baum–Welch algorithm can infer them from a given observation sequence. It proceeds by iteratively 

executing two steps: 

 

E‐step (Expectation): Using the current model parameters, compute the expected state‐occupancy probabilities via 

the forward–backward algorithm. 

 

M‐step (Maximization): Maximize the expected log‐likelihood to update the model parameters. 

 

The detailed procedure is as follows: 

 

1) Initialization: 

Set initial estimates for 𝜆 = (𝛱, 𝛢, 𝛣). 
 

2) Expectation Computation: 

For each time t, compute 𝛾𝑡(𝑖) and𝜉𝑡(𝑖, 𝑗). 
 

3) Parameter Update: 

 𝜋𝑖 = 𝛾1(𝑖)  

 𝑎𝑖𝑗 =
∑ 𝜉𝑡(𝑖,𝑗)
𝑇−1
𝑡=1

∑ 𝛾𝑡(𝑖)
𝑇−1
𝑡=1

  

 𝜇𝑖
(𝑘+1) =

∑ 𝛾𝑡（𝑖）𝑜𝑡
𝑇
𝑡=1

∑ 𝛾𝑡(𝑖)
𝑇
𝑡=1

  

 ∑ =
∑ 𝛾𝑡(𝑖)(𝑜𝑡−𝜇𝑖

(𝑘+1)
)（𝑜𝑡−𝜇𝑖

(𝑘+1)
）
𝛵𝑇

𝑡=1

∑ 𝛾𝑡(𝑖)
𝑇
𝑡=1

（𝑘+1）

𝑖   

4) Repeat the above steps until the model parameters converge. 

Table 1: Log-likelihood value increment with number of iterations 
iterations Log-likelihood value increment 

1 –266.08481965 +nan 

2 489.76302619 +755.84784583 
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3 637.60707764 +147.84405145 

4 717.74690078 +80.13982314 
5 719.30112589 +1.55422511 

6 719.31225338 +0.01112749 

7 719.31850337 +0.00624999 
8 719.32370799 +0.00520462 

9 719.32932772 +0.00561973 

10 719.33714701 +0.00781929 
11 719.35249718 +0.01535017 

12 719.41035452 +0.05785734 

13 720.31649064 +0.90613613 
14 731.96751934 +11.65102870 

15 737.44058357 +5.47306423 
16 737.44110140 +0.00051783 

17 737.44111545 +0.00001405 

18 737.44111584 +0.00000039 

 
Figure 5: Convergence curve of Baum–Welch algorithm 

From the convergence curve and the final parameters, the Baum–Welch algorithm’s log-likelihood stabilizes at 

approximately 737.44 after the 18th iteration, indicating convergence. The mean vectors and covariance matrices 

of the Gaussian emission distributions for each state at this point are: 

 𝜇0 =

(

 
 
 

−0.8355
−0.2982
0.8033
0.8116
−0.7973
0.8009 )

 
 
 
𝜇1 =

(

  
 

0.1382
2.4166
0.1372
0.0810
−0.1936
0.0398 )

  
 
𝜇2 =

(

 
 
 

1.6580
−0.1319
−1.1207
−1.1188
1.1068
−1.1109)

 
 
 
𝜇3 =

(

 
 
 

0.8256
−0.3958
−1.1912
−1.1842
1.2123
−1.1460)

 
 
 

  

 𝛴0 = diag(0.001455,0.367872,0.235455,0.236074,0.226267,0.271548)  

 𝛴1 = diag(0.579433,0.616887,0.327270,0.314858,0.299020,0.449439)  

 𝛴2 = diag(0.009396,0.097786,0.006863,0.005917,0.016642,0.003105)  

 𝛴3 = diag(0.161850,0.001294,0.000477,0.000481,0.007429,0.000479)  

5.3 Model Training 

 

5.3.1 Sintering State Recognition 

 

Based on the optimized parameters obtained from the Baum–Welch algorithm, an HMM is constructed. Data from 

Sheet2 are then read in to perform state recognition and to validate the model’s accuracy. 

 

A confusion matrix is a core tool for evaluating the performance of a classification model, as it intuitively shows 

the correspondence between model predictions and true labels. For the four stages of the sintering process 

(preheating, combustion, sintering, cooling), a 4×4 confusion matrix is constructed, with rows representing the 
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true classes and columns representing the predicted classes. Each element 𝐶ij in the matrix denotes the number of 

samples whose true class is i but were predicted as class j. 

 (

49 0 0 0
2 5 0 0
0 0 14 0
0 0 1 18

)  

The confusion matrix shows that the model correctly identified all 49 preheating states, correctly recognized 5 of 

the 7 combustion states while misclassifying 2 as preheating, correctly classified all 14 sintering states, and 

correctly recognized 18 of the 19 cooling states with the remaining one misclassified as combustion. 

Table 2: The classification performance of the model 
State Precision Recall F1-score Support 

preheating 0.9608 1.0000 0.9800 49 
combustion 1.0000 0.7143 0.8333 7 

sintering 0.9333 1.0000 0.9655 14 

cooling 1.0000 0.9474 0.9730 19 

 

The model’s classification performance is presented in Table 2. Precision measures the proportion of samples 

predicted for a given stage that actually belong to that stage, recall measures the proportion of true samples for a 

stage that are correctly identified, and their harmonic mean is the F1‐score. Support denotes the actual number of 

samples for each stage in the test set. The results indicate that the model distinguishes the preheating, sintering, 

and cooling stages exceptionally well—each achieving precision and recall above 0.93 and an F1‐score above 

0.98—while overall classification accuracy reaches 96.63%. In summary, the model demonstrates outstanding 

performance and can reliably support real‐time identification of process stages and determination of the optimal 

cooling moment. 

 

5.3.2 Sintering state prediction 

Table 3: Observational data 
Time Temperature SO2 NO NOX O2 CO 

10 51.533750 14.6 196.3 300.6 15.2 9267.5 

11 52.872415 13.4 191.6 304.2 15.5 8732.0 

12 52.185667 12.3 196.1 300.0 15.4 8918.8 
13 52.514910 11.7 207.3 301.3 15.2 8910.3 

14 52.645583 11.7 204.6 313.0 15.3 9445.0 

 

Data from minutes 10 through 14 in Sheet 3 (Table 3) were used as the observation sequence; as shown in Figure 

4.6, the model predicted entry into the cooling stage at 57 minutes, differing from the actual time by only one 

minute, and the overall accuracy of the state‐prediction model reached 91.55%. 

 
Figure 3: Comparison of the real state with the predicted state 
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6. CONCLUSION 
 

This study employed a Hidden Markov Model (HMM) to model and identify the four key stages of the iron‐ore 

sintering process—preheating, combustion, sintering, and cooling. Minute-level flue-gas monitoring data 

(temperature, SO₂ concentration, NO concentration, NOₓ concentration, O₂ content, and CO concentration) were 

used to estimate the parameters of a Gaussian HMM via the Baum–Welch algorithm, and the Viterbi algorithm 

was applied to decode each minute’s hidden state until the first detection of the “cooling” stage. Experimental 

results demonstrate an overall classification accuracy of 96.63%; precision and recall for the preheating, sintering, 

and cooling stages each exceed 93%. Although recall for the combustion stage is slightly lower (71.43%) due to 

limited sample size, its precision remains at 100%, providing robust support for accurately determining the cooling 

onset. 

 

The primary contributions of this work include the integration of Baum–Welch parameter estimation with 

Gaussian emission distributions to achieve precise modeling of sintering stages, and the introduction of a “predict-

until-cooling” strategy based on Viterbi decoding that offers a viable algorithmic framework for online monitoring 

systems. By accurately pinpointing the cooling moment, this approach helps to avoid both underburning and 

overburning, thereby improving raw-material utilization and reducing carbon emissions. Nonetheless, certain 

limitations remain: the scarcity of combustion-stage samples and feature overlap with adjacent stages resulted in 

occasional misclassifications, and the model exhibited sensitivity to initial parameters and convergence behavior, 

indicating a need for more robust initialization strategies. Future work could incorporate deep reinforcement 

learning to enhance model robustness and explore multi-source data fusion—such as including sinter-bed thickness 

or permeability as auxiliary observations, or integrating infrared thermal imaging to capture the spatiotemporal 

evolution of bed-temperature profiles—to further boost predictive accuracy and practical applicability. 

 

In summary, this study validates the effectiveness of Hidden Markov Models for stage recognition and carbon-

emission control in the sintering process, offering valuable technical guidance for online monitoring and intelligent 

emission reduction in the steel industry. 
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