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Abstract: This paper systematically explores the research progress and application potential of the integration of 

Convolutional Neural Networks (CNNs) and Wavelet Transform (WT) techniques in electroencephalogram (EEG) signal 

processing. By combining the time-frequency localization analysis of wavelet transforms with the deep feature learning 

capabilities of CNNs, this approach effectively addresses the traditional challenges of EEG signal processing, such as non-

stationarity and subtle signal characteristics. The study identifies core challenges, including insufficient real-time 

performance due to model complexity, variability in cross-subject generalization, and subjective biases in annotated data. 

Future directions focus on lightweight dynamic fusion architectures, multimodal data collaborative learning, and enhanced 

clinical interpretability techniques. Through algorithmic innovations and interdisciplinary collaboration between 

engineering and medicine, breakthroughs in fields such as brain-machine interfaces and precise diagnosis of neurological 

diseases are expected. 
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1. INTRODUCTION 
 

1.1 Research Background and Significance 

 

Electroencephalographic (EEG) signals serve as a dynamic representation of neural activity in the brain, and their 

multi-scale characteristics require precise analysis through quantifiable parameters. In the time domain, EEG 

signals exhibit subtle amplitudes, ranging from 1 to 100 μV, and are susceptible to environmental interference 

when the signal-to-noise ratio is below 10 dB. The non-stationarity is characterized by the Hurst exponent (0.7-

1.3), representing long-range correlations, while non-linear characteristics can be quantified using sample entropy 

values (1.2-2.0) [1-2]. In the frequency domain, EEG can be divided into δ waves (0.5-4 Hz, with power 

density >100 μV²/Hz during deep sleep), θ waves (4-8 Hz, showing a 30% increase in power in the prefrontal 

cortex during memory tasks), α waves (8-13 Hz, with power in the occipital lobe accounting for over 60% during 

eyes-closed rest), β waves (13-30 Hz, closely related to focus), and γ waves (>30 Hz, involving high-order 

cognitive 40-80 Hz short-duration oscillations) [3-4]. 

 

However, traditional analysis methods face significant limitations. Independent Component Analysis (ICA) often 

mistakenly eliminates epileptic spike components (70-200 ms, amplitude >150 μV) due to morphological 

similarities when separating ocular artifacts, leading to a 15%-20% decrease in detection sensitivity. For instance, 

when epileptic spikes overlap with ocular artifacts (0.5-5 Hz low-frequency oscillations) in the time domain, the 

ICA algorithm may incorrectly classify them as the same independent component [5-6]. Fourier Transform, due 

to its fixed time-frequency resolution, struggles to accurately locate the onset of sleep spindles (11-16 Hz, lasting 

0.5-1.5 s), with an error range up to ±300 ms. Manual feature engineering relies on empirical thresholds, such as 

extracting only α-wave asymmetry features in emotion recognition, while neglecting the nonlinear relationship 

between γ-wave phase synchronization (PLV > 0.6) and valence intensity, which results in feature interpretation 

explaining less than 40% of the variance [7-8]. These limitations demand breakthroughs through the integration 

of the hierarchical abstraction capabilities of Convolutional Neural Networks (CNN) and the physical solvability 

of time-frequency analysis via wavelet transforms, offering a new paradigm for high-precision EEG analysis. 

 

1.2 Research Status 

 

In recent years, both convolutional neural networks (CNNs) and wavelet transform have made significant progress 

in the field of EEG signal processing, but each individual method still has inherent limitations. CNNs have 

demonstrated outstanding performance in EEG classification tasks. For example, Yao X et al. proposed a novel 
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model based on Transformer and convolutional neural networks (TCNN) for spatiotemporal feature learning of 

EEG signals to achieve automatic emotion classification, with the EEG ST-TCNN model achieving an accuracy 

of 96.67% on the SEED dataset [9]. Tiwari et al. introduced a hybrid method that combines CNNs and long short-

term memory networks to predict epilepsy, achieving an accuracy of 98% in predicting epilepsy [10]. However, 

the fixed scale of the convolution kernels makes it difficult to capture transient features with rapid changes in non-

stationary signals. Wavelet transform compensates for this limitation with its multi-scale decomposition capability. 

For example, Daubechies wavelet (db4) can control the time-frequency localization error of sleep spindles within 

±50 ms. However, manually selected wavelet basis functions lack the ability to adaptively represent complex 

features. 

 

Existing fusion methods primarily present three technical approaches: 1) Serial fusion (e.g., wavelet denoising 

followed by CNN classification), where Chen J X et al. improved the classification accuracy of the DEAP dataset 

in emotion recognition tasks to 86.7% [11]; 2) Parallel feature fusion, based on synchronized squeezing transform 

and deep convolutional neural networks, which uses Fourier synchronized squeezing transform and wavelet 

synchronized squeezing transform to evaluate the time-frequency matrix of EEG signals. This method achieves 

over 99% accuracy, sensitivity, and specificity for both local and non-local EEG signal classification [12]; 3) 

Embedded fusion (e.g., wavelet convolutional layer), where wavelet convolutional neural networks based on 

attention mechanisms are used for epilepsy EEG classification, increasing the AUC value for epilepsy prediction 

to 98.89% [13]. However, current research still faces the following bottlenecks: 

 

1) Low feature interaction efficiency: In parallel fusion, the dimensional differences between time-domain features 

(such as sample entropy) and frequency-domain features (such as wavelet energy) result in difficulties in feature 

space alignment, requiring dimensionality reduction via principal component analysis (PCA). 

 

2) Insufficient dynamic adaptability: Existing fusion strategies often use fixed weight allocation (e.g., time-

frequency features are fused in a 6:4 ratio), which fails to adapt to the dynamic characteristics of EEG signals. 

 

3) Weak cross-subject generalization: Current models show significant performance degradation in cross-subject 

testing. For instance, on the BCI Competition IV 2a dataset, the accuracy of the same model was 89.1% for the 

training subjects but only 72.3% on new subject data, highlighting the challenge posed by individual physiological 

differences on model robustness [14]. 

 

These limitations indicate that existing fusion methods have not fully explored the synergistic potential of CNNs 

and wavelet transform. There is an urgent need for breakthroughs in feature coupling mechanisms, dynamic 

adaptive modeling, and cross-domain generalization. 

 

2. FUNDAMENTALS OF CONVOLUTIONAL NEURAL NETWORKS AND 

WAVELET TRANSFORM 
 

2.1 Principles of Convolutional Neural Networks 

 

Convolutional Neural Networks (CNNs) achieve automatic feature extraction through a hierarchical structure 

consisting of convolutional layers, pooling layers, and fully connected layers. The convolutional layer uses a one-

dimensional kernel that slides along the time axis, exploiting the local weight sharing property to extract the 

temporal features of EEG signals. The ReLU activation function enhances the nonlinear modeling capability. The 

pooling layer compresses the feature dimensions through max pooling, suppressing high-frequency noise 

interference while preserving key temporal patterns. The fully connected layer integrates global features to perform 

classification, such as outputting four types of movement intentions through Softmax in motor imagery tasks [15-

16]. The hierarchical abstraction mechanism of CNNs allows shallow layers to capture δ/θ wave rhythms (0.5-8 

Hz), while deeper layers capture cross-frequency correlations (e.g., phase-amplitude coupling between β and γ 

bands), providing an efficient framework for end-to-end analysis of EEG signals. 

 

2.2 Principles of Wavelet Transform 

 

Wavelet transform provides a multi-scale analysis framework for the interpretation of non-stationary features in 

EEG signals by dynamically adjusting the time-frequency window. Its core lies in the use of scalable and shiftable 
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wavelet basis functions, overcoming the global frequency domain limitation of Fourier transform and enabling 

precise capture of the local time-frequency characteristics of signals. Discrete wavelet transform decomposes the 

raw EEG into physiological frequency bands such as δ, θ, α, β, and γ through cascaded high-pass and low-pass 

filters. Combined with adaptive threshold denoising techniques, it improves the signal-to-noise ratio by 12-18 dB 

after suppressing electromyographic artifacts, while retaining the sharp rising-edge features of epileptic spikes. 

The choice of wavelet basis directly affects the analysis performance: the Morlet wavelet, due to its excellent time-

frequency focusing property, is commonly used for extracting the instantaneous energy of γ waves (40-80 Hz) in 

emotion recognition. However, fixed wavelet basis functions are insufficient to accommodate individual 

differences in EEG signals, necessitating integration with convolutional neural networks to dynamically optimize 

the parameters of the basis functions, thereby enhancing adaptability across subjects [17]. 

 

3. EXPLORATION OF CNN-WAVELET TRANSFORM FUSION METHODS 
 

3.1 CNN Method Based on Wavelet Transform Preprocessing 

 

Wavelet Transform-Based Preprocessing enhances feature extraction and multi-scale signal reconstruction, 

providing high signal-to-noise ratio EEG input data for CNNs. The raw EEG is decomposed into five layers using 

discrete wavelet transform, with the sym5 wavelet basis function employed to separate the δ-γ frequency band 

components. The high-frequency detail coefficients are processed with soft thresholding using the SURE 

thresholding method. The reconstructed signal is further decomposed into five subbands corresponding to 

physiological frequency bands: δ, θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-80 Hz). Two-dimensional time-

frequency maps are generated through time-frequency energy calculation and encoded as RGB three-channel 

images for input into a lightweight CNN model. 

 

3.2 CNN and Wavelet Transform Parallel Processing Method 

 

The parallel processing of CNN and Wavelet Transform achieves multidimensional feature fusion of EEG signals 

through a dual-pathway feature collaboration mechanism. In the dual-stream parallel architecture, the CNN 

pathway employs one-dimensional convolution kernels to directly process the raw EEG, extracting deep temporal 

domain features such as long-range rhythmic associations during epileptic seizures. The wavelet pathway 

decomposes the δ, θ, α, β, and γ frequency band sub-signals using discrete wavelet transform, with each subband 

input into a lightweight CNN for extracting frequency-domain local features (e.g., transient oscillations of γ waves 

in the 40-80 Hz range). The feature fusion strategy includes early and late fusion approaches: Early fusion 

concatenates the temporal features (128 dimensions) and frequency-domain features (5×32 dimensions) after the 

convolutional layers, followed by joint classification through a fully connected layer, improving the AUC of 

epileptic seizure detection to 0.96. Late fusion uses a weighted voting mechanism, achieving an accuracy of 88.2% 

on the DEAP emotion dataset, a 4.7% improvement over the single model. Attention-guided dynamic fusion 

further optimizes feature interaction efficiency—spatial attention mechanism dynamically assigns weights based 

on the physiological significance of EEG channels, while time-frequency attention uses wavelet time-frequency 

energy maps to locate key time windows, reducing the false positive rate of epileptic prediction by 42%. 

 

3.3 Improved CNN Method Based on Wavelet Convolution 

 

The improved method based on wavelet convolution constructs a feature extraction layer with physical 

interpretability by embedding the multiscale characteristics of wavelet transform into the design of CNN 

convolution kernels. The wavelet convolutional layer replaces traditional fixed convolution kernels with learnable 

wavelet basis functions, dynamically adjusting the time-frequency receptive field through parameterized scale and 

shift factors. 

 

4. APPLICATION OF CNN-WAVELET TRANSFORM FUSION IN EEG SIGNAL 

PROCESSING 
 

4.1 Epileptic EEG Signal Detection and Prediction 

 

The CNN-wavelet transform fusion technique significantly enhances the detection sensitivity and pre-ictal warning 

capability of epileptic EEG signals through multiscale feature joint modeling and dynamic prediction mechanisms. 

Research based on the CHB-MIT dataset demonstrates that after decomposing EEG into δ-γ frequency band sub-
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signals using wavelet transform, CNN extracts time-domain features of each frequency band through cascaded 

convolution layers. During seizure onset, the γ-band in the temporal lobe shows an energy surge of 80%-120%, 

while the θ-band continuously rises by 25%-40% in the frontal lobe 5-15 minutes before a seizure. The fusion 

model achieves a detection sensitivity of 98.3% through a cross-frequency attention mechanism. Pre-ictal 

prediction locates precursor features by using the time-frequency energy matrix generated by continuous wavelet 

transform: transient high-frequency oscillations and a 40%-60% decrease in the δ-α phase-amplitude coupling 

(PAC) index 10-30 minutes before a seizure. A bidirectional LSTM model, accelerated on FPGA hardware, 

achieves 30-minute-level prediction (AUC=0.94, false alarm rate <0.2 events/day) [18]. 

 

4.2 Emotion Recognition Based on EEG Signals 

 

The CNN-wavelet transform fusion technique significantly enhances the ability to analyze the nonlinear dynamic 

characteristics of EEG signals in emotion recognition tasks through multimodal feature co-modeling. Research 

based on the DEAP emotion dataset demonstrates that wavelet transform, particularly through time-frequency 

energy analysis of the Gamma frequency band, can precisely capture transient features of emotional valence and 

arousal. In high arousal states, Gamma wave energy surges by 60%-90% in the frontal lobe channels (F3/F4), 

while negative valence emotions induce phase synchronization (PLV > 0.65) between Theta waves (4-8 Hz) and 

Gamma waves in the right temporal lobe (T8). The fusion model employs a dual-stream architecture: the wavelet 

pathway extracts time-frequency energy maps, while the CNN pathway uses 3D convolution kernels to extract 

spatiotemporal features across channels. An attention mechanism is introduced to dynamically weight the 

contribution of frontal Gamma energy and occipital Alpha wave asymmetry features. 

 

5. ISSUES AND CHALLENGES 
 

The complex structure of the CNN-wavelet transform fusion model leads to a significant increase in computational 

resource requirements, limiting its deployment in real-time scenarios and on edge devices. The parallel architecture 

of wavelet multi-scale decomposition and CNN significantly increases the number of parameters, with a single 

inference requiring 15-25G floating point operations. On GPU servers, the processing latency for a single sample 

reaches 80-120 ms, far exceeding the real-time requirements of wearable devices (<50 ms). 

 

Electroencephalogram signal analysis faces significant challenges from noise interference and label reliability. 

Traditional preprocessing methods often lead to the loss of high-frequency features while suppressing eye 

movement and electromyography artifacts. Furthermore, subjective differences in expert annotations and 

individual physiological variations result in millisecond-level deviations in seizure period labels, and the emotional 

labels exhibit a high degree of dispersion, with a variability of up to 1.5 points. Current technological 

advancements focus on three areas: 1) Adaptive noise suppression techniques based on dynamic filtering, which 

improve the signal-to-noise ratio (SNR) to 18 dB using recursive least squares methods while preserving key 

gamma wave features; 2) A semi-supervised learning framework that generates high-confidence pseudo-labels 

from 10% of annotated data, driving an F1-score breakthrough of 0.78 in emotion recognition; and 3) Multimodal 

cross-validation that integrates eye tracking and facial expression analysis, boosting the Kappa coefficient of label 

consistency to 0.85. However, in mobile scenarios, a 40% increase in electromyography interference exposes the 

scenario generalization flaws of noise suppression models, and the lack of standardized labeling protocols hinders 

cross-institutional data collaboration. Future work must integrate domain adaptation techniques to develop noise-

robust models, optimize distributed label quality via federated learning frameworks, and simultaneously establish 

multi-center annotation protocols to reduce subjective bias, ultimately forming an EEG analysis system that 

balances signal fidelity and label reliability. 

 

The CNN-wavelet fusion model faces dual challenges of individual physiological differences and experimental 

condition fluctuations in cross-individual and cross-scenario generalization, such as signal attenuation fluctuations 

caused by differences in skull thickness and baseline drift of signals due to electrode impedance changes. Existing 

optimization strategies focus on domain adaptation techniques, dynamic model architecture adjustment, and data 

augmentation methods, significantly enhancing cross-individual classification performance through adversarial 

feature distribution alignment, network depth adaptive switching based on signal complexity, and cross-subject 

signal synthesis. To address the bottleneck in cross-device and cross-task generalization, wavelet-convolution joint 

feature decoupling techniques effectively reduce cross-device classification errors by separating physiological 

common features from device-specific noise, though with a significant increase in model complexity. Current 

research needs further optimization of network architecture design to reduce computational redundancy while 

maintaining noise suppression capability, and achieve low-loss transfer across tasks by constructing task-
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independent feature spaces. Experiments show that these methods can improve cross-task transfer performance, 

but further efforts are needed to seek a better balance between model lightweighting and generalization ability, 

exploring collaborative optimization paths for efficient feature decoupling mechanisms and distributed training 

frameworks. 

 

The existing CNN-wavelet fusion strategy is constrained by rigid feature interaction mechanisms and insufficient 

parameter adaptability, making it difficult to accommodate the dynamic characteristics of EEG signals. Static 

fusion methods struggle to balance the collaborative differences between high-frequency transient features and 

low-frequency slowly varying features due to fixed weight allocation, resulting in significant fluctuations in 

classification accuracy across task scenarios. Dynamic fusion techniques achieve feature self-adaptive weighting 

through a spatiotemporal-frequency dual-path attention mechanism, effectively enhancing the contribution weight 

of high-frequency transient features and reducing false alarm rates. However, the additional computational load 

introduced by extra parameters limits its deployment efficiency. Adaptive wavelet basis learning enhances the 

matching degree between the wavelet basis and task frequency bands by jointly optimizing wavelet scale factors 

and convolution kernel parameters, significantly improving classification performance. Nevertheless, the non-

differentiability of wavelet transforms leads to insufficient end-to-end training stability, requiring the use of 

surrogate gradients or frequency-domain relaxation methods, such as complex wavelet networks, to balance 

convergence speed and generalization error. Future directions focus on the integration of neural architecture search 

and meta-learning to automatically construct task-driven dynamic fusion topologies. Preliminary experiments 

suggest that this approach can reduce cross-subject classification accuracy fluctuations, but high computational 

costs limit its application. There is an urgent need for lightweight search strategies to overcome efficiency 

bottlenecks while exploring differentiable wavelet operators and dynamic parameter sharing mechanisms to reduce 

complexity while ensuring model generalization capability, thus advancing EEG analysis across scenarios towards 

efficient adaptation. 

 

6. OUTLOOK 
 

6.1 Model Performance 

 

Future improvements in the performance of CNN-wavelet fusion models can be achieved from multiple 

dimensions of innovation: Firstly, optimizing the model structure by incorporating cross-attention mechanisms to 

capture long-range dependencies across frequency bands in EEG signals, thereby enhancing the ability to model 

temporal features. Secondly, developing a differentiable wavelet learning framework to adaptively optimize the 

time-frequency focusing properties of the wavelet basis through end-to-end training, enabling precise extraction 

of dynamic frequency band features. Simultaneously, designing frequency-domain sensitive dynamic convolution 

kernels that adjust the weight of kernel functions based on the spectral characteristics of the input signal to improve 

cross-subject generalization ability. On the training strategy side, integrating meta-learning with wavelet-domain 

data augmentation techniques can enhance model adaptability in few-shot learning scenarios. From an 

interdisciplinary perspective, theories from neuroscience can be leveraged to construct biologically interpretable 

hybrid architectures based on spiking neural networks, optimizing the detection sensitivity to specific neural 

oscillatory patterns. Performance validation requires the establishment of a standardized EEG test set covering 

multiple pathological and physiological states, with cross-center cross-validation to assess model robustness. The 

core challenge lies in balancing the computational efficiency of dynamic parameter optimization with model 

generalization performance, necessitating the exploration of lightweight architecture search strategies and the 

collaborative optimization of differentiable wavelet operators, advancing the reliable application of fusion models 

in clinical settings. 

 

6.2 Multimodal Data Fusion 

 

CNN-wavelet transform fusion technology can enhance the robustness of brain state decoding by integrating EEG 

signals with multimodal physiological data. The multimodal fusion adopts a tensor fusion strategy combined with 

cross-modal attention mechanisms, dynamically allocating the association weights of different modality features, 

significantly improving classification accuracy in emotion recognition tasks. For spatiotemporally heterogeneous 

data, a spatiotemporal alignment network captures the synergistic effects between neural activity and physiological 

behavior through joint time-frequency analysis and motion feature extraction techniques. Current challenges focus 

on issues such as temporal misalignment due to differences in sampling rates across heterogeneous data and cross-

modal noise coupling. It is necessary to develop adaptive resampling algorithms and disentangled representation 

learning techniques to suppress spurious correlations and enhance cross-subject generalization ability. In the future, 
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hybrid architectures of spiking neural networks and wavelet transforms can be explored to achieve deep fusion of 

multimodal data in a biologically inspired feature space, while simultaneously optimizing dynamic feature 

alignment mechanisms and noise decoupling strategies. This will facilitate the development of a fusion framework 

that balances temporal synchronization and modality complementarity, advancing the practical application of 

cross-modal brain-machine interfaces in complex scenarios. 

 

6.3 Clinical Translation 

 

The clinical translation of CNN-wavelet transform fusion technology requires overcoming the bottlenecks of data 

standardization and model interpretability. Existing systems demonstrate high accuracy in epilepsy focus 

localization and seizure prediction; however, the "black-box" nature of the algorithms and poor cross-device 

compatibility limit their clinical adoption. Accelerating the technology's implementation requires 

multidimensional collaboration: developing interpretable modules that align with medical standards to enhance 

physician trust, utilizing feature contribution visualization to improve diagnostic accuracy; promoting cross-

vendor data standardization protocols to reduce feature drift caused by device differences; and constructing a 

cloud-edge collaborative architecture to optimize screening efficiency in primary healthcare settings. In the future, 

continuous model iteration based on real-world data, combined with dynamic feature calibration techniques, will 

address the issue of inter-center data heterogeneity and promote the technology's penetration into grassroots 

healthcare. The core challenge lies in balancing model complexity and interpretability, necessitating the 

establishment of interdisciplinary collaboration mechanisms between medicine and engineering to optimize the 

entire chain—from algorithm design and data governance to clinical application—ultimately bridging the gap from 

laboratory effectiveness to clinical utility. 

 

7. CONCLUSION 
 

The CNN-wavelet transform fusion technology significantly enhances the accuracy and efficiency of 

electroencephalogram signal processing through multi-scale feature collaboration and dynamic optimization 

mechanisms. It has demonstrated clinical potential in tasks such as epilepsy detection, emotion recognition, and 

sleep monitoring. This technology overcomes the limitations of traditional methods in analyzing non-stationary 

signals by combining the advantages of wavelet time-frequency localization analysis and CNN hierarchical 

abstraction, enabling the precise capture of subtle EEG features and cross-band association modeling. However, 

issues such as high model complexity, weak generalization across individuals, and subjective labeling still limit 

its large-scale application, requiring further exploration of lightweight dynamic fusion architectures and 

multimodal data joint learning to enhance robustness. Future research should focus on: 1) interpretability 

enhancement techniques, improving clinical trust through feature contribution visualization; 2) edge computing 

optimization, enabling real-time processing on wearable devices (latency < 30 ms); 3) the construction of multi-

center standardized data platforms to promote algorithm generalization and clinical translation. With the 

development of brain-machine interfaces and neurostimulation technologies, this fusion approach holds promise 

for breakthrough applications in the diagnosis and treatment of neurological diseases and intelligent human-

machine interaction. 
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