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Abstract: In complex and heterogeneous traffic environments, traditional single-vehicle planning strategies fail to meet 

the global coordination demands of vehicle-to-vehicle and vehicle-to-infrastructure interactions. This study proposes a 

multi-agent cooperative path planning and decision-making framework based on V2X communication technology. A 

coordinated architecture consisting of a central controller and edge-level vehicle nodes is constructed. Graph Neural 

Networks (GNNs) are employed to model the dynamic states of nearby vehicles, and a multi-stage joint optimization 

algorithm is introduced to simultaneously optimize path efficiency and conflict avoidance. The framework is evaluated on 

the SUMO real-world traffic simulation platform and the Apollo real-vehicle testing platform. Experimental results show 

that the system significantly improves traffic throughput (+28.6%) and reduces path conflict rates (−35.4%) in 

high-interaction areas such as intersections and merging zones, demonstrating strong adaptability to coordinated traffic 

scenarios.  

 

Keywords: V2X communication; Multi-agent system; Path planning; Graph neural network; Traffic coordination.  

 

1. INTRODUCTION 
 

With the rapid acceleration of global urbanization, urban population growth has intensified dramatically [1]. 

Traffic congestion and safety issues—like a looming sword of Damocles—have severely constrained sustainable 

urban development and degraded residents’ quality of life [2]. According to related statistics, in certain megacities, 

the average vehicle speed during peak hours drops to as low as 15 km/h, leading to substantial time losses during 

commuting [3]. Globally, traffic congestion causes annual economic losses amounting to hundreds of billions of 

U.S. dollars. 

 

For example, in the European Union, traffic congestion results in an estimated loss of €100 billion each year. 

Meanwhile, traffic accidents occur frequently, resulting in both severe economic losses and a high number of 

casualties [4]. In 2023 alone, over 1.3 million people worldwide died in traffic accidents. Autonomous driving 

technology, regarded as a transformative solution, has received extensive attention from researchers, automotive 

companies, and governmental agencies. Traditional single-vehicle autonomous driving systems primarily rely on 

onboard sensors [5]. Cameras are used to capture visual surroundings, while radar accurately measures the 

distance and relative velocity of surrounding objects [6]. These sensors support environmental perception, 

enabling individual vehicles to perform local path planning and decision-making. However, the real-world traffic 

environment is highly complex, often characterized by high vehicle density and unpredictable behaviors from 

diverse traffic participants. In urban core areas—especially at busy intersections—vehicles from different 

directions frequently attempt to pass simultaneously [7]. Under such conditions, relying solely on limited local 

sensor perception and isolated decision-making capabilities can easily lead to traffic congestion or even collisions. 

According to statistics from traffic management authorities, approximately 30% of urban traffic accidents occur at 

intersections, a large portion of which are due to the lack of coordinated decision-making between individual 

vehicles [8]. 

 

The emergence of Vehicle-to-Everything (V2X) communication technology provides a promising new approach 

to alleviating these challenges [9]. V2X enables comprehensive, multi-layered information exchange between 

vehicles (V2V), vehicles and infrastructure (V2I), vehicles and pedestrians (V2P), and vehicles and networks 

(V2N) [10]. Through V2X, vehicles can acquire traffic information far beyond the sensing range of their onboard 

equipment, laying a solid foundation for cooperative operation among multiple agents [11]. In a Multi-Agent 

System (MAS), each vehicle can be treated as an autonomous intelligent agent. Through real-time communication 
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and in-depth collaboration with other agents and roadside infrastructure, these agents jointly contribute to 

optimizing overall traffic flow. In recent years, with the increasing deployment of next-generation communication 

technologies such as 5G, V2X-based multi-agent cooperation has rapidly emerged as a major research focus in 

autonomous driving [12]. A growing number of research teams have engaged in this direction, actively exploring 

its potential value in real-world applications [13]. 

 

Nevertheless, multiple technical challenges remain in this domain. On one hand, with the increasing number of 

connected vehicles and the growing complexity of communication data, how to efficiently manage large-scale 

information flow and avoid system overload has become a key problem [14]. It is estimated that during peak hours 

in the central area of a mid-sized city, V2X communication traffic can reach several terabytes per hour. On the 

other hand, in highly dynamic traffic scenarios, achieving accurate and efficient cooperative path planning and 

real-time decision-making among multiple agents remains an open research challenge. Therefore, conducting 

in-depth studies on V2X-enabled multi-agent cooperative path planning and dynamic decision-making 

mechanisms for autonomous driving is of both practical and theoretical significance. From a practical perspective, 

it can provide feasible technical solutions for alleviating congestion and improving safety [15]. From a theoretical 

perspective, it facilitates cross-disciplinary integration and innovation in multi-agent systems, communication 

technologies, and autonomous driving algorithms. 

 

2. METHODOLOGY 
 

2.1 System Architecture Design 

 

This study proposes a coordinated architecture consisting of a central controller and edge-level in-vehicle nodes. 

The central controller is responsible for collecting and processing traffic data from individual vehicle nodes and 

roadside infrastructure, including vehicle positions, speeds, travel directions and traffic signal states [16]. Each 

vehicle node is equipped with a V2X communication module that receives instructions from the central controller 

and simultaneously transmits its own status information [17]. Additionally, vehicle nodes are capable of direct 

V2V communication to support localized coordination. This hierarchical structure leverages the global data 

processing capability of the central controller while preserving the autonomy and real-time responsiveness of 

vehicle nodes [18]. Tests indicate that under normal traffic conditions, the average time for the central controller to 

process one round of global data is approximately 50 milliseconds. The response delay of vehicle nodes to the 

controller’s instructions remains under 10 milliseconds, satisfying the system’s real-time requirements and 

ensuring timely information processing and decision-making in practical traffic scenarios. For large-scale traffic 

data processing, the central controller employs a distributed computing architecture with a throughput of up to 

100,000 messages per second, ensuring system stability under high-traffic conditions. 

 

To more clearly illustrate the differences in traffic data processing capability across different architectures, a 

comparison of commonly used processing frameworks is presented below: 

Table 1: Performance Comparison of Common Traffic Data Processing Architectures 

Architecture Type 
Data Processing Throughput 

(entries/second) 

Latency in Large-Scale 

Data Scenarios (ms) 

Scalabili

ty 

Centralized Architecture 50,000 80 Low 

Distributed Architecture (This Work) 100,000 50 High 

Hybrid Architecture 70,000 60 Medium 

 

2.2 Vehicle Dynamic State Modeling Based on Graph Neural Networks (GNN) 

 

To accurately model the dynamic states of nearby vehicles, this study incorporates Graph Neural Networks 

(GNNs). In traffic scenarios, each vehicle is treated as a node in a graph, and the communication links between 

vehicles are treated as edges [19,20]. GNNs can effectively learn features and relationships embedded in 

graph-structured data. By using vehicle state information—such as position, speed, and acceleration—as node 

features, GNNs are capable of capturing the interactions and dynamic dependencies between vehicles [21,22]. For 

instance, in merging sections, GNNs can predict potential merging conflicts by analyzing the speed and distance of 

adjacent vehicles, thereby providing decision-making recommendations. Experimental results show that compared 

to traditional rule-based prediction methods, GNN-based dynamic modeling improves prediction accuracy by 20%. 

In complex traffic scenarios, the recall rate of the GNN model reaches 85%, allowing it to detect most potential 

conflicts and provide strong support for downstream decision processes. 
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2.3 Multi-Stage Joint Optimization Algorithm 

 

To simultaneously optimize path length and conflict avoidance, a multi-stage joint optimization algorithm is 

proposed in this study. In the first stage, classic path search algorithms such as Dijkstra’s algorithm are used to 

generate an initial shortest path for each vehicle. In the second stage, a conflict detection model is constructed to 

identify potential conflicts between vehicles based on their planned paths. If a conflict is detected, the path is 

adjusted using an optimization algorithm—such as a variant of the A* algorithm—aimed at minimizing path 

length increases while avoiding conflicts. During path adjustment, the system fully utilizes vehicle information 

obtained through V2X communication to enable collaborative optimization among multiple agents. In terms of 

computational complexity, the proposed multi-stage joint optimization algorithm demonstrates an overall time 

complexity of O(n2) in scenarios involving 100 vehicles [23,24]. Compared to several globally optimized 

approaches, it offers significantly higher computational efficiency and is feasible for real-time deployment. In 

simulated traffic environments with up to 500 vehicles, the algorithm completes both path planning and conflict 

avoidance within an average of 100 milliseconds, satisfying real-time operational requirements. 

 

To further illustrate the advantages of the proposed method, the table below compares the runtime of commonly 

used path planning algorithms under different vehicle counts: 

Table 2: Runtime Comparison of Common Path Planning Algorithms (Unit: ms) 

Number of Vehicles Dijkstra Algorithm A Algorithm* 
Proposed Multi-Stage Joint 

Optimization Algorithm 

100 80 60 50 

300 200 150 80 

500 350 250 100 

 

3. RESULTS AND DISCUSSION 
 

3.1 Simulation Results 

 

A large number of simulations were conducted on the real-world traffic flow simulation platform SUMO, covering 

various complex traffic scenarios such as intersections, merging zones, and roundabouts [25]. In the intersection 

scenario, the proposed V2X-based multi-agent cooperative path planning and decision-making framework 

increased the number of vehicles passing per hour from 800 (under traditional single-vehicle planning strategies) 

to 1029. The average travel time was reduced by 28.6%, and the average vehicle speed increased from 12 km/h to 

16 km/h. In the merging zone scenario, the path conflict rate decreased by 35.4%, and the average waiting time 

during vehicle merging was reduced by 40 seconds. In the roundabout scenario, the average circulation time 

decreased by 25%, and the average speed of vehicles within the roundabout increased by 20%. These results 

demonstrate that the proposed framework significantly enhances traffic efficiency and reduces vehicle conflicts 

across various complex scenarios, showing strong applicability. 

 

3.2 Real-Vehicle Testing Results 

 

Real-road tests were carried out on the Apollo autonomous driving platform. A road section with multiple 

intersections and heavy traffic flow was selected for the evaluation [26]. The test vehicle was equipped with V2X 

communication modules and the decision-making algorithm proposed in this study. Compared with vehicles not 

using this technology, the test vehicle exhibited smoother driving behavior when passing through complex 

segments, with the average number of stops reduced by 30%. Meanwhile, over the entire test segment, the average 

fuel consumption of the test vehicle decreased by 8%, indicating not only improved traffic flow efficiency but also 

smoother driving dynamics. This result further validates the practicality and effectiveness of the proposed method 

in real traffic environments. In addition, the average driving speed of the test vehicle increased by 15% compared 

to conventional vehicles. When responding to unexpected traffic conditions, the response time was shortened by 

30 milliseconds, significantly improving driving safety [27,28]. 

 

3.3 Result Analysis and Discussion 

 

An in-depth analysis of both the simulation and real-vehicle results highlights the essential role of V2X 

communication technology. It allows vehicles to obtain comprehensive traffic information and substantially 
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extends their “perception range.” In complex traffic environments, V2X enables vehicles to detect congestion 

ahead and understand the driving intentions of surrounding vehicles in real time [29]. The multi-agent cooperation 

mechanism functions as a “coordinator” for the traffic system, efficiently integrating the information collected by 

each vehicle and enabling collaborative interaction. Taking the intersection scenario as an example, the 

coordination among agents allows vehicles to pass in an orderly manner, avoiding congestion caused by 

competition for right-of-way and improving overall traffic efficiency [30]. The use of GNN enables accurate 

modeling of vehicle dynamics, providing a reliable foundation for decision-making. Compared with traditional 

methods, GNN more effectively captures complex interactions between vehicles by integrating multidimensional 

features such as position, velocity, and acceleration, significantly improving the prediction accuracy of potential 

conflicts [31]. The proposed multi-stage joint optimization algorithm demonstrates strong performance in 

balancing shortest-path planning with conflict avoidance. The initial shortest-path generation stage provides 

efficient travel trajectories, while the subsequent conflict detection and path adjustment stages ensure safety. These 

components work in tandem, ensuring the overall traffic system operates efficiently and safely. 

 

3.4 Communication Delay in V2X Under High Traffic Conditions 

 

During the experimental process, the issue of V2X communication delay under heavy traffic conditions became 

increasingly prominent. In saturated traffic areas, the average V2X communication latency reached approximately 

50 milliseconds, which significantly impacts autonomous driving systems that depend on real-time information for 

decision-making. For instance, in high-speed driving scenarios, a 50-millisecond delay may result in delayed 

reactions to sudden events, thereby increasing the risk of collisions. Such communication delays can also disrupt 

multi-agent coordination, leading to deviations in cooperative behavior between vehicles and reducing overall 

traffic efficiency [32]. Analytical results indicate that the primary sources of delay are limited network bandwidth 

and the reduced performance of communication protocols under high load conditions. To address this, future 

improvements should focus on optimizing communication protocols to ensure more efficient data transmission in 

high-density environments. 

 

Additionally, deploying advanced communication infrastructure—such as upgrading 5G base stations and 

incorporating edge computing—can help reduce latency and enhance both real-time responsiveness and system 

reliability. In ultra-dense traffic scenarios, communication latency may further increase to over 100 milliseconds, 

placing even greater demands on system robustness. This remains a critical challenge that requires targeted 

research and engineering solutions. To clearly illustrate the average V2X communication delays under different 

traffic scenarios, Table 3 is provided below. 

Table 3: Mean V2X Communication Latency Across Different Traffic Scenarios (Unit: ms) 

Traffic Scenario Normal Traffic High Traffic Ultra-Dense Traffic 

Urban Arterial Road 30 50 80 

Intersection 40 60 100 

Near Highway Toll Booth 35 55 90 

 

4. CONCLUSION 
 

This study proposed a cooperative path planning and decision-making method for autonomous vehicles, 

leveraging V2X communication to overcome the limitations of single-vehicle perception and isolated control. A 

hierarchical system structure combining centralized coordination with vehicle-level responsiveness was developed, 

alongside a graph-based modeling approach and a multi-stage route adjustment algorithm. Experimental results 

from both simulation and real-world tests confirm that the proposed approach improves traffic efficiency and 

driving stability in complex scenarios. In particular, notable reductions were observed in average travel time, 

vehicle conflict rates, and fuel consumption. The integration of vehicle-to-vehicle and vehicle-to-infrastructure 

communication effectively enhanced situational awareness beyond the range of onboard sensors, enabling more 

informed decision-making and smoother vehicle interactions. The graph-based vehicle modeling contributed to 

more accurate prediction of dynamic interactions, particularly in areas prone to merging or right-of-way 

competition. The multi-stage adjustment strategy achieved a balance between travel time minimization and 

conflict avoidance, maintaining computational efficiency under high traffic density. However, the study also 

highlighted communication latency as a critical constraint under heavy traffic loads. In such conditions, increased 

delays may impair coordination effectiveness and pose safety risks. Future work should therefore focus on 

optimizing communication protocols, increasing system robustness, and validating the proposed method in more 

diverse urban environments. In summary, the proposed V2X-assisted cooperative strategy demonstrates 
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measurable benefits in traffic coordination, and provides a viable foundation for large-scale application of 

collaborative autonomous driving technologies. 
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