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Abstract: With the increasing instability of the global economic and political landscape, maintaining the continuity of 

high-tech component supplies has become a major challenge. This study proposes a forecasting model for high-tech 

component supply disruptions based on a regional substitution strategy, combining Graph Attention Networks (GAT) with 

Long Short-Term Memory (LSTM) sequence learning. The model builds a weighted graph using four key factors: 

component characteristics, technical compatibility, logistics distance, and supply-demand variability, while LSTM is 

employed to analyze order fluctuation trends over time. Data from 92 types of component supply chains across 142 

manufacturing enterprises over a 36-month period were used for training and testing. Results show that the model achieves 

a candidate node prediction accuracy of 91.2%, a recall rate of 88.5%, and an F1 score of 89.8%, outperforming 

conventional regression models and models using only GAT or LSTM separately. Simulated disruption scenarios indicate 

that selected substitute nodes can maintain over 80% of the original supply capacity with a cost increase of less than 9%. In 

addition, a node substitution difficulty coefficient is introduced to assist in planning cross-regional redundancy, helping 

companies better manage supply risks. The approach presented in this study contributes to strengthening supply chain 

resilience for high-tech industries and provides practical insights for enterprise decision-making and policy planning.  

 

Keywords: Component Substitution; Graph Neural Networks; Time Series Forecasting; Supply Stability; Technical 

Compatibility Analysis.  

 

1. INTRODUCTION 
 

In the context of the ongoing acceleration of global economic integration, high-tech industries have become a core 

driver of economic growth and an enhancement of international competitiveness [1]. Their supply chain structures 

display unprecedented complexity, spanning numerous countries and regions across all five continents, with a high 

dependency on the unique specialized production capabilities of each region [2,3]. For example, in the aerospace 

industry, the manufacturing of a commercial aircraft involves components such as aircraft engines from the United 

States, avionics equipment from France, high-precision mechanical parts from Germany, and specialty alloy 

materials from Japan [4]. This process involves dozens of countries, hundreds of first-tier suppliers, and thousands 

of second- and third-tier suppliers, all working in close coordination to form a large and intricate global supply 

network [5]. Similarly, in the electronics and information industry, the production of a high-end smartphone 

involves a diverse global supply chain, including chip design technology from the United States, display 

manufacturing from South Korea, chip foundries in Taiwan, and precision assembly and component supply from 

mainland China [5]. It is estimated that the components for such a device may come from over 20 countries and 

regions worldwide, with all parts working in close collaboration to form a highly complex supply network [6]. 

According to the China Development Report 2024, industries with high-tech and high-value-added manufacturing, 

such as semiconductor devices, spacecraft and carrier rocket manufacturing, and aircraft manufacturing, have 

experienced rapid growth in recent years, with value-added growth significantly surpassing the average growth 

rate of the manufacturing sector [7]. This further highlights the vigorous development of high-tech industries and 

the extensive complexity of their supply chains. However, in recent years, the international political and economic 

situation has become increasingly volatile, with a dramatic rise in uncertainty [8]. Trade protectionism has grown, 

and trade frictions between countries have frequently erupted. Geopolitical conflicts continue, compounded by 

global public health events and other "black swan" incidents, exacerbating the issue of limited supply of key 

components in specific international supply networks [9]. In the semiconductor industry, some countries, 

leveraging their monopolistic advantages in key chip manufacturing equipment and component technology, have 

implemented extremely strict export control policies [10]. Since 2018, when a certain country initiated chip export 

controls, industry reports indicate that about 30% of small and medium-sized electronic device manufacturers 
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worldwide have been severely affected. These companies, unable to obtain key chips and components in a timely 

manner, have had their production lines halted, facing operational difficulties, and some are even at risk of 

bankruptcy [11]. In the telecommunications equipment manufacturing sector, some countries have imposed export 

restrictions on high-end optical communication chips, causing delays in the development of communication 

equipment manufacturers who rely on imported chips, leading to a gradual erosion of their market share by 

competitors [12]. The new energy vehicle industry has also been greatly affected by changes in the policies of 

battery raw material suppliers. Between 2020 and 2022, some lithium-rich countries adjusted their export policies, 

limiting the export volume of lithium ore, causing the average cost for global battery manufacturers to increase by 

up to 40% [13]. The significant rise in costs has severely compressed profit margins, resulting in limited 

production capacity, which has greatly constrained the production progress of new energy vehicles and disrupted 

the overall development rhythm of the industry [14]. Even more seriously, this issue of supply limitations triggers 

a chain reaction, gradually spreading from upstream to downstream in the industrial chain, affecting related 

supporting industries and the end market, and causing severe impacts on the entire economic ecosystem [15]. The 

issue of supply limitations poses a significant obstacle to the stable development of high-tech industries, 

emphasizing the urgency and importance of improving supply chain continuity [16]. As one of the effective 

strategies for addressing such supply risks, regional substitution strategies offer the possibility of maintaining 

normal production and operations by actively exploring and utilizing potential suppliers from other regions when 

original supply sources are disrupted [17]. However, a key challenge in implementing regional substitution 

strategies is the accurate prediction of the supply situation for substitute components. Traditional supply 

forecasting methods are often based on simple linear models or empirical judgment, which are difficult to apply to 

the high complexity of high-tech component supply networks [18]. These methods typically fail to fully consider 

factors such as component attributes, technical compatibility, logistics radius, and supply-demand fluctuations, 

and are even less capable of effectively analyzing the complex interrelationships between these factors [19]. For 

example, simple linear regression forecasting methods typically handle only linear relationships between a few 

variables and struggle with the nonlinear and multivariate coupling relationships present in supply networks [20]. 

Empirical judgment-based methods are highly influenced by subjective factors, and when faced with complex and 

changing market environments and supply networks, they are unable to provide accurate and reliable predictions. 

 

With the rapid advancement of artificial intelligence technologies, Graph Neural Networks (GNNs) and time 

series analysis methods have demonstrated strong capabilities in complex system modeling and forecasting [21]. 

GNNs can efficiently process graph-structured data, using the information propagation mechanism between nodes 

and edges to deeply learn the complex relationships among data [22]. Long Short-Term Memory (LSTM), a classic 

model for time series analysis, can accurately capture long-term dependencies in time series data [23]. The 

integration of these two methods provides a new path to address the challenges of forecasting high-tech component 

supply. This paper aims to develop a substitution path prediction model that integrates Graph Attention Networks 

(GAT) with LSTM sequence learning, aiming to achieve accurate predictions of high-tech component supply 

conditions and provide strong support for the successful implementation of regional substitution strategies. 

 

2. METHODS 
 

2.1 Model Construction 

 

In the model construction process, a weighted node graph is built based on four features: component attributes, 

technical compatibility, logistics radius and supply-demand fluctuations. For example, in the case of an aircraft 

engine manufacturing company, when quantifying the component attributes of potential supply source nodes, such 

as the temperature resistance range of key components, which is between 1000 and 1500°C, an initial feature 

vector is formed. Technical compatibility is assessed by comparing the degree of match between the components 

provided by the suppliers and the equipment interface standards of the enterprise, with the edge weights assigned 

accordingly. The logistics radius is measured in kilometers, based on actual geographical distance data. Using 

historical order data from 142 manufacturing companies, such as data from an electronics equipment manufacturer 

indicating that in peak seasons, the order volume increases by 30%-50%, while in off-peak seasons, it decreases by 

10%-20%, the node activity level is dynamically adjusted. The attention mechanism of the Graph Attention 

Network (GAT) is employed to calculate the weight between nodes, strengthening the modeling of complex 

supply network relationships [24]. Long Short-Term Memory (LSTM) is used to process time series data, such as 

36 months of order fluctuations, capturing long-term dependencies. The features output by both GAT and LSTM 

are then combined, establishing the data foundation for substitute source prediction [25]. Recent studies show that, 

in modeling similar complex supply chain scenarios, methods based on graph neural networks can more accurately 

depict the relationships between nodes compared to traditional models that only consider node attributes, 
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enhancing the model's ability to understand complex systems [26]. For instance, in traffic network flow prediction, 

using graph neural network models has been shown to improve prediction accuracy by 10%-15%, providing strong 

theoretical and practical support for the model construction in this paper. 

 

2.2 Data Processing 

 

The data is sourced from 142 manufacturing companies' 92 types of component supply chain paths, covering 36 

months of order fluctuation data and 28 types of node feature labels. This data comprehensively records the supply 

situation of different enterprises in actual operations. For example, an automotive parts manufacturer provided 

complete order fluctuation data for the past 3 years, including order volume, order time, and other relevant 

information. During data processing, for a small number of missing values, such as missing logistics cost data for 

certain months of a company, the average logistics cost for the same period from similar companies was used to fill 

the missing values [27]. Outliers were detected using boxplots. If an order volume for a particular quarter was 

found to be far beyond the normal range, it was identified as a data entry error and was corrected. Numeric data 

was standardized, and categorical data was one-hot encoded to meet the requirements of the model for training. 

According to recent research in data processing, advanced data cleaning algorithms were used when handling 

large-scale supply chain data, improving processing efficiency by 20%-30%, and allowing for more accurate 

identification and handling of outliers, which further improved the data quality and provided a more reliable 

foundation for subsequent model training [28,29]. 

 

2.3 Model Training and Optimization 

 

The model parameters are updated using stochastic gradient descent (SGD) and its variants, with a cross-entropy 

loss function to optimize classification performance. The dataset is split into 70% for training, 15% for validation, 

and 15% for testing. For instance, using the multi-category component supply chain data from a large 

manufacturing group, the model is iteratively trained on the training set, while accuracy and other metrics are 

monitored on the validation set to prevent overfitting. Once the model reaches convergence, its final performance 

is evaluated on the test set [30]. Additionally, L1 and L2 regularization methods are applied to balance model 

complexity and fitting ability. Recent studies have suggested that using an adaptive learning rate adjustment 

strategy in model training, compared to a fixed learning rate, can increase the convergence speed by 30%-40% and 

help avoid getting trapped in local optima, further enhancing the model's training effectiveness. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Model Performance Evaluation 

 

The proposed model achieved a candidate node prediction accuracy of 91.2% on the test set. This metric was 

calculated as the ratio of correctly identified candidate nodes to the total number of candidate nodes. In addition, 

the recall rate and F1 score were evaluated, reaching 88.5% and 89.8%, respectively. The recall rate measures the 

proportion of actual candidate nodes correctly identified, while the F1 score, integrating both precision and recall, 

provides a comprehensive assessment of the model's effectiveness in identifying substitute sources [31]. 

 

Comparative analysis against baseline models further highlights the advantages of the proposed approach. Models 

using only GAT and only LSTM achieved candidate node accuracies of 82.3% and 85.1%, respectively, while a 

traditional regression model attained an accuracy of 75.6%. The integrated GAT-LSTM model outperformed all 

baseline methods across key performance metrics, demonstrating its ability to capture both structural relationships 

and temporal dependencies within complex supply networks [32]. Moreover, when compared with advanced 

models proposed in recent studies, such as a convolutional neural network-based supply forecasting model with an 

accuracy of 88.7%, the proposed method maintained superior predictive performance. These results collectively 

confirm the effectiveness of combining graph-based relational learning with temporal sequence modeling for 

supply forecasting in high-tech industries. 

Table 1: Performance Metric Comparison of Different Models 

Model Type Candidate Node Accuracy Recall Rate F1 Score 

Proposed Integrated Model 91.2% 88.5% 89.8% 

Model Using Only GAT 82.3% - - 

Model Using Only LSTM 85.1% - - 
Traditional Regression Model 75.6% - - 
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3.2 Substitution Response Simulation Results After Sudden Disruptions 

 

In the simulation of substitution responses following sudden disruptions, the nodes selected by the model 

demonstrated good performance. With a cost increase of no more than 9%, these nodes were able to reliably 

support more than 80% of the original demand. By constructing simulation scenarios, where the original main 

supply source was suddenly disrupted, the model predicted candidate substitute sources and ranked them by 

priority [33]. The supply capacity of these sources was then evaluated under different cost constraints. The results 

showed that the higher-ranked substitute nodes could meet the majority of the original demand within a reasonable 

cost increase. Further analysis revealed that these preferred nodes had advantages in terms of technical 

compatibility and logistics radius. High technical compatibility enabled these nodes to quickly adapt to the demand 

side’s production system, reducing costs and time losses from technical adjustments [34]. A suitable logistics 

radius ensured that, in the event of supply disruption, components could be delivered to the demand side on time 

with relatively low logistics costs, thereby maintaining production continuity. Recent research on supply chain 

disruption simulations across industries has indicated that substitute sources with high technical compatibility and 

a suitable logistics radius can reduce production downtime by 40% to 50% in response to supply disruptions, 

supporting the reliability of the results in this study. 

 

3.3 Node Substitution Difficulty Coefficient Analysis 

 

The node substitution difficulty coefficient introduced in this study as an auxiliary analysis indicator provides 

valuable insight for cross-regional redundancy configuration. The node substitution difficulty coefficient 

considers factors such as differences in component attributes, technical compatibility challenges, logistics 

difficulties, and market supply-demand tightness [35]. By calculating the substitution difficulty coefficient for 

different nodes, it was found that there is a correlation between the coefficient and the model’s predicted candidate 

node priority. Nodes with a lower substitution difficulty coefficient were more likely to be identified by the model 

as preferred substitute sources. For example, when analyzing potential substitute sources in the supply network of 

a high-tech component, it was observed that nodes with similar component attributes to the original supply source, 

high technical compatibility, convenient logistics, and relatively relaxed market supply-demand conditions had 

lower substitution difficulty coefficients, and were ranked higher in the model’s predicted candidate nodes. This 

result indicates that the node substitution difficulty coefficient can assist enterprises in identifying which regions’ 

potential suppliers are more suitable for redundancy configuration. This helps in more scientifically planning 

supply chain layouts when implementing regional substitution strategies, enhancing supply chain resilience and 

risk resistance. A recent empirical study on the supply chain of a high-tech industry showed that using the node 

substitution difficulty coefficient to assist decision-making reduced supply chain disruption risk by 30% to 40%, 

further validating the practical value of this indicator. 

 

4. CONCLUSION 
 

This study presents a supply forecasting model for high-tech components under a regional substitution strategy by 

integrating Graph Attention Networks (GAT) with Long Short-Term Memory (LSTM) sequence analysis. By 

jointly modeling component attributes, technical compatibility, logistics radius, and supply-demand fluctuations, 

the proposed method accurately predicts potential substitute sources in complex supply networks. Experimental 

evaluation on real-world datasets shows that the model achieves a candidate node accuracy of 91.2%, a recall rate 

of 88.5%, and an F1 score of 89.8%, outperforming traditional and single-model approaches. Substitution response 

simulations further validate the model’s practical value, demonstrating that selected candidate nodes can maintain 

over 80% of the original supply capacity with minimal cost increases following sudden disruptions. Additionally, 

the introduction of a node substitution difficulty coefficient provides a new perspective for planning cross-regional 

redundancy and enhancing supply chain resilience. The findings suggest that the proposed approach can serve as 

an effective tool for enterprises facing growing supply chain uncertainties, supporting more robust supply planning 

and risk mitigation strategies. 
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