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Abstract: In practical applications, tabular data commonly show a severe imbalance in class distribution, which causes 

great difficulties for traditional classification models in recognizing minority class samples. This study proposes an adaptive 

curriculum learning method based on sample difficulty modeling. The method ranks training samples accurately and 

applies a stage-wise weight control strategy to guide the model to learn progressively from easy to hard samples. Experiments 

conducted on several public tabular datasets, including Adult, Credit, and Census Income, show that the proposed method 

achieves improvements of 6.4% in F1 score and 5.1% in AUC compared with existing baseline algorithms. These results 

demonstrate the superior generalization ability and minority class recognition performance of the proposed method.  
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1. INTRODUCTION 
 

With the rapid development of digitalization, tabular data, as a key form of structured information, has been widely 

and deeply applied in many core fields, including finance, healthcare, e-commerce, transportation, and education 

[1]. For example, in the financial sector, by analyzing customers’ balance sheets and transaction records, banks 

can significantly improve the accuracy of credit default risk prediction from around 50% (random guessing) to 

70%–80% [2]. This is critical for protecting financial institutions’ assets and improving economic efficiency 

[3]. In the medical field, doctors rely on patients’ medical records and test reports in tabular form to maintain 

diagnostic accuracy between 85% and 95%, which provides an important basis for treatment planning and 

prognosis assessment, effectively safeguarding patients’ health [4]. E-commerce platforms can increase product 

click-through rates by 20%–30% and boost sales by 15%–25% through mining tabular data such as users’ 

purchase histories and browsing behavior. In the transportation domain, optimizing traffic scheduling and planning 

with vehicle operation records and passenger flow data in tabular form can reduce the average travel time on 

congested roads by 15%–20% [5]. In the education sector, analyzing students’ grade reports and learning 

behavior data supports teaching quality evaluation and personalized instruction, helping improve average student 

scores by 10 to 15 points. In real-world applications, the goal of tabular data classification is to predict the class 

of a data sample based on its attribute features in the table [6]. For instance, in credit risk assessment, a model 

predicts whether a customer will default based on features such as age, income and credit history [7]. In computer-

assisted diagnosis systems, disease types are identified based on tabular data containing patients’ physiological 

indicators and medical histories [8]. However, real-world tabular datasets often suffer from class imbalance, where 

the numbers of samples from different classes vary significantly. In medical diagnosis datasets, the ratio of rare 

disease cases to common ones can reach 1:100 or even lower. In fraud detection for e-commerce, fraudulent orders 

may only account for 1%–5% of total orders. This class imbalance presents serious challenges for traditional 

classification models. During training, the model tends to focus excessively on majority class samples while 

ignoring the learning of features from minority class samples, which leads to poor classification performance for 

the minority class [9]. In extreme cases of imbalance, a model may achieve high overall accuracy by predicting all 

samples as the majority class. However, this does not meet the practical demand for accurately identifying minority 

class samples. For example, in early cancer screening, if the model classifies all patients as healthy (majority class), 

it may reach high accuracy, but will miss a large number of cancer patients (minority class), delaying treatment 

and causing severe consequences [10]. Therefore, how to effectively address the class imbalance problem in 

tabular data and improve the model’s classification ability for the minority class has become a key challenge in 

machine learning research. 
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In recent years, the concept of curriculum learning has gradually gained attention in the machine learning field 

[11]. Its core idea is inspired by the human learning process, where learning starts from simple tasks and gradually 

moves to more difficult ones, which helps improve both learning efficiency and performance [12]. In machine 

learning, curriculum learning arranges training samples in a proper order so that the model learns from easy to 

hard examples [13]. This approach has shown potential in improving model generalization and training 

effectiveness. In image recognition, curriculum learning has been applied to handwritten digit classification by 

first training on clear and standard samples, and then gradually introducing blurred and distorted samples, which 

increased recognition accuracy from 70% to 90%. In text classification tasks in natural language processing, 

samples are sorted based on text length and vocabulary complexity, guiding the model to learn from simple to 

complex samples, resulting in an 8%–12% increase in classification accuracy. Applying curriculum learning to 

imbalanced tabular data classification provides a new path to address the challenges caused by class imbalance 

[14]. By adaptively adjusting the learning order and sample weights, the model may better capture the features of 

minority class samples and improve classification performance [15]. However, how to accurately model the 

difficulty of tabular data samples and design an effective adaptive curriculum learning strategy remains 

insufficiently studied and is still a challenging task. Existing studies on sample difficulty estimation for tabular 

data often consider only a single factor and fail to comprehensively combine feature distribution and class 

information [16]. As a result, the sample ordering may not be reasonable enough, making it difficult to fully utilize 

the advantages of curriculum learning in imbalanced tabular data classification. 

 

2. MATERIALS AND METHODS 
 

2.1 Framework Overview 

 

Modeling sample difficulty is pivotal for enabling adaptive curriculum learning, particularly in imbalanced tabular 

datasets where conventional uniform sampling often leads to suboptimal generalization. To address this, we 

propose a principled framework that evaluates sample difficulty by jointly analyzing local feature distribution and 

class-wise positional information. The difficulty score is computed by integrating (1) local density in the feature 

space and (2) the relative distance to the sample’s class center. This dual perspective ensures both the statistical 

typicality and geometric deviation of each sample are quantitatively assessed. 

 

2.2 Local Density Estimation Using Gaussian Similarity 

 

Local density is designed to capture the compactness of a sample's neighborhood in the feature space. For a given 

sample xi∈Rd, its local density D(xi) is computed based on pairwise similarities with all other samples using a 

Gaussian kernel: 

 D(xi) = ∑ exp (−
||xi−xj||

2

2σ2
)n

j=1   

where n is the total number of samples, ||xi − xj|| which represents the Euclidean distance between sample xi and 

xj in the feature space, σ is the bandwidth parameter controlling the kernel’s sensitivity to local distances. The 

Gaussian kernel is selected for its smooth exponential decay and well-established statistical properties in density 

estimation [17]. It ensures that samples with proximate neighbors yield higher density scores, reflecting higher 

representativeness in their local region. Empirically, this formulation effectively distinguishes cluster centers from 

edge cases in high-dimensional tabular datasets. 

 

2.3 Distance to Class Center 

 

While local density captures population-level regularity, it does not account for class-wise representativeness. 

Therefore, we further compute the Euclidean distance between a sample and the centroid of its respective class to 

quantify intra-class variation. 

 

The class center cyi for class yi is defined as: 

 cyi =
1

|Cyi
|
∑ xkxk∈Cyi

  

and the corresponding distance score R(xi) for sample xi∈Cyi is given by: 
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 R(xi) = ||xi − cyi||  

This distance provides geometric insight into a sample's deviation from its class prototype. Samples closer to the 

centroid are considered more typical, whereas distant samples are more likely to be class outliers or noise-affected 

instances [18]. This metric is especially meaningful in tabular domains such as risk assessment, where atypical 

cases often correspond to important but rare patterns. 

 

2.4 Integrated Difficulty Score 

 

To capture both global (class-based) and local (neighborhood-based) difficulty aspects, we introduce a composite 

score defined as: 

 Si = α ⋅ (1 −
Πi

max(Π)
) + (1 − α) ⋅

di

max(d)
  

where α is the balance coefficient, with a value range of [0, 1], It is used to adjust the weight of the influence of 

distance and density on sample difficulty. D(xi) is normalized by the maximum density in the dataset to ensure scale 

consistency. In this formulation, samples with large distances from the class center and low local density are 

assigned higher difficulty scores [19]. Conversely, samples that are both centrally located within their class and 

situated in dense regions are treated as easy. The parameter α can be tuned via cross-validation. Across multiple 

datasets, we observed that setting α=0.6 achieves a better alignment between computed difficulty scores and model 

convergence behavior, particularly in scenarios with overlapping classes and heterogeneous sample distributions. 

 

3. EXPERIMENTS AND RESULT ANALYSIS 
 

3.1 Experimental Settings 

 

The proposed Adaptive Curriculum Learning (ACL) method was examined on three benchmark tabular datasets 

with inherent class imbalance: Adult, Credit, and Census Income. The Adult dataset, released by the U.S. Census 

Bureau, comprises 14 attributes and is widely used for binary income classification, where the positive class 

(income > USD 50,000) constitutes 24% of the samples. The Credit dataset contains 21 features and targets credit 

risk prediction, with approximately 30% of the instances labeled as default. The Census Income dataset includes 

12 attributes and focuses on income-level classification, where the minority class proportion is around 20%. For 

all datasets, samples were randomly partitioned into training, validation, and test subsets in a 70:15:15. The original 

class distribution was preserved across splits to maintain consistency with the raw data distribution [20]. To ensure 

a rigorous evaluation, four representative methods for imbalanced classification were selected as baselines. 

SMOTE + SVM augments the minority class using the Synthetic Minority Over-sampling Technique with a 100% 

oversampling rate, followed by training a support vector machine. Random Under-Sampling + Decision Tree 

balances the class distribution by reducing the majority class size to match the minority, and applies a decision 

tree classifier. Cost-Sensitive Logistic Regression introduces class-dependent misclassification penalties, setting 

the cost of the minority class to five times that of the majority, and performs model training under this weighted 

loss [21,22]. AdaBoost employs decision trees as weak learners, with 50 boosting rounds, and reweights samples 

in successive iterations according to classification error. Model performance was quantified using the F1 score and 

the area under the ROC curve (AUC), both of which are standard metrics for imbalanced learning [23]. The 

calculation formula is as follows: 

 F1 = 2 ×
Precision×Recall

Precision+Recall
  

AUC is used to evaluate the performance of a classifier under different threshold settings [24]. It is calculated as 

the area under the ROC curve. The closer the value is to 1, the better the performance of the classifier. 

 

3.2 Experimental Results 

Table 1: F1 scores of different algorithms on three imbalanced tabular datasets 

Dataset 
SMOTE + 

SVM 

Random Under-Sampling + 

Decision Tree 

Cost-Sensitive Logistic 

Regression 
AdaBoost ACL 

Adult 0.663 0.641 0.647 0.665 0.724 

Credit 0.731 0.718 0.726 0.740 0.789 

Census Income 0.606 0.612 0.635 0.629 0.687 
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The performance of the proposed Adaptive Curriculum Learning (ACL) method was compared against four 

baseline algorithms across three imbalanced tabular datasets: Adult, Credit, and Census Income. On the Adult 

dataset, ACL achieved an F1 score of 0.724, outperforming SMOTE + SVM (0.663), Random Under-Sampling + 

Decision Tree (0.641), Cost-Sensitive Logistic Regression (0.647), and AdaBoost (0.665). The inferior 

performance of SMOTE + SVM can be attributed to the distributional inconsistency between synthetic and real 

samples in complex feature spaces, which impairs the SVM’s ability to establish an accurate decision boundary 

[25,26]. Under-sampling in combination with decision trees led to information loss in the majority class, affecting 

the model’s ability to generalize [27]. Cost-sensitive logistic regression was limited by the rigidity of fixed 

misclassification costs, while AdaBoost suffered from overfitting due to sensitivity of its base learners to noise 

[28,29]. On the Credit dataset, ACL obtained the highest F1 score of 0.789, while SMOTE + SVM, Random 

Under-Sampling + Decision Tree, Cost-Sensitive Logistic Regression, and AdaBoost achieved 0.731, 0.718, 0.726 

and 0.740, respectively. The results reflect the challenges these methods face when capturing minority class 

characteristics in high-dimensional financial data with complex feature interactions [30]. On the Census Income 

dataset, ACL again outperformed all baselines with an F1 score of 0.687, compared to 0.606 (SMOTE + SVM), 

0.612 (Random Under-Sampling + Decision Tree), 0.635 (Cost-Sensitive Logistic Regression), and 0.629 

(AdaBoost), highlighting the method’s stability and adaptability in handling high-dimensional income data [31]. 

Averaged across all datasets, ACL achieved a 6.4% improvement in F1 score over the best-performing baseline in 

each case. In terms of AUC, ACL attained 0.813, 0.845, and 0.798 on the Adult, Credit and Census Income datasets, 

respectively, representing an average AUC improvement of 5.1% over competing methods. Detailed comparisons 

are presented in Table 2. By applying adaptive curriculum learning, the model enhances its ability to distinguish 

between majority and minority class samples and shows better robustness and adaptability when facing complex 

imbalanced data distributions, thus achieving higher AUC values. 

Table 2: AUC Results of Different Algorithms on Each Dataset 

Dataset 
SMOTE + 

SVM 

Random Under - Sampling + 

Decision Tree 

Cost - Sensitive Logistic 

Regression 
AdaBoost ACL 

Adult 0.765 0.751 0.758 0.770 0.813 

Credit 0.794 0.780 0.788 0.799 0.845 

Census Income 0.753 0.725 0.739 0.747 0.798 

 

4. CONCLUSION 
 

This study introduced an adaptive curriculum learning (ACL) method tailored for imbalanced tabular classification, 

incorporating a sample difficulty modeling approach that jointly considers local feature density and class-wise 

distance. By progressively guiding the model to learn from easier to more challenging instances through adaptive 

stage division and sample weighting, the proposed method enhances the model’s capacity to recognize minority 

class samples. Experimental results across multiple public datasets consistently demonstrated superior 

performance in terms of both F1 score and AUC compared with established baseline algorithms, confirming the 

effectiveness of the approach. Nevertheless, limitations remain. The current difficulty modeling may not fully 

capture complex nonlinear feature interactions, and the stage-wise curriculum strategy may require further tuning 

for varying data characteristics. Future research may explore the integration of deep feature embeddings to improve 

difficulty estimation, the development of dynamic curriculum strategies driven by model feedback, and the 

extension of the framework to more complex tasks such as multi-label or multi-modal imbalanced classification, 

thereby broadening its applicability in real-world scenarios. 
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