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Abstract: The article primarily proposes a beamforming method based on the Least Squares Support Vector Machine 

(LSSVM). Using a uniform horizontal line array as an example, it explores the design of plane wave beamforming under 

the far-field assumption. Unlike conventional methods of weighted steering vector and copied correlation beamforming for 

uniform horizontal line arrays, the article suggests using the Least Squares Support Vector Machine algorithm to establish 

a learning relationship between received and desired signals, replacing steering vectors with learned weights, and 

substituting copied correlation operations with kernel operations for beamforming. Simulation verification shows that 

compared to conventional beamforming methods, this approach achieves narrower mainlobe widths and lower sidelobe 

levels, providing theoretical support for further engineering applications. 
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1. INTRODUCTION 
 

In conventional beamforming problems [1], steering vectors are used with real signals for copy correlation. 

Steering vectors are typically divided into plane wave models based on near-field and far-field assumptions. 

However, in reality, the actual positions of array elements can shift, leading to incorrect construction of steering 

vectors and performance degradation of beamformers due to array mismatches [2-3]. Addressing these issues, 

Chen Pei et al. [4] introduced a criterion of progressive minimum variance, aimed at achieving sparse 

reconstruction of the interference-plus-noise covariance matrix and obtaining steering vector estimates in the 

desired direction, thereby determining the optimal steering vector for the beamformer. Cui Lin et al. [5] proposed 

a robust beamforming method using adaptive Gaussian-Legendre integration for covariance matrix reconstruction, 

aimed at determining the optimal steering vector. Martinez-Ramon was the first to propose applying Support 

Vector Machine (SVM) optimization techniques for estimating unknown parameters [6-7]. Building on Vapnik's 

SVM regression algorithm [8], this paper proposes a Least Squares Support Vector Machine beamforming method 

that establishes a learning relationship between the received and expected signals, using learned weights to replace 

the steering vectors, and kernel operations to replace copy correlation operations. 

 

The desired signal can be constructed from the spectrum, either as a single frequency signal or a superposition of 

single frequency signals. The steering vectors are learned from actual data, rather than being predetermined by a 

model. It has good adaptive capabilities. The choice of the Least Squares Support Vector Machine is due to its 

strong mathematical logic, few adjustable parameters, high interpretability, and fast computational speed. 

 

2. METHODOLOGY 
 

2.1 Research Approach 

 
Figure 1: Research approach flowchart of this paper 

As shown in Figure 1, this study transitions from classical copy correlation to regression processing of real data. 

The advantage of choosing the Least Squares Support Vector Machine lies in its ability to transform the problem 

into a constrained optimization problem, enhancing the model's interpretability, while least squares can increase 

the solution speed. Below, we start with the derivation from the Least Squares Support Vector Machine to obtain 
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the learned steering vectors.  

 

The output of a beamformer can be expressed as a linear combination of the outputs from each array element. 

 𝑑[𝑛] = 𝑤𝐻𝑥[𝑛] + 𝑒[𝑛] (1) 

𝑑[𝑛] is the expected signal output after being processed by the beamformer, 𝑤 represents the weighted vector of 

each array element, 𝑥[𝑛] is the signal received by each array element, 𝑒[𝑛] is the output error of the signal. Among 

these, the received signal 𝑥[𝑛] includes the desired signal 𝑠[𝑛] and noise 𝑣[𝑛]. 

 𝑥[𝑛] = 𝑠[𝑛] + 𝑣[𝑛] (2) 

The desired observable signal is 𝑠[𝑛], but the actual measurable data is 𝑥[𝑛]. 
 

2.2 Least Squares Support Vector Machine Beamforming 

 

For linear beamforming problems, the design function for linear beamformers is as follows: 

 𝑓(𝑥) = 𝑤𝐻𝑥 + 𝑏 (3) 

This paper establishes a nonlinear learning relationship between the desired signal 𝑑[𝑛] and the array received 

signal 𝑥[𝑛] , introducing a mapping function , where 𝑅 represents the input data space of 𝑥 , 

and𝐻represents the feature data space of 𝜑(𝑥). Therefore, the LSSVM regression problem can be expressed as: 

 
min 𝐽(𝑤, 𝜉) =

1

2
‖𝑤‖2 +

1

2
𝛾 ∑ 𝜉𝑖

2𝚤
𝑖=1

𝑠. 𝑡. 𝑓(𝑥) = 𝑤𝐻𝜑(𝑥𝑖) + 𝑏 + 𝜉𝑖 𝑖 = 1,2, . . . , 𝑙
 (4) 

Where  is the slack variable, is the regularization parameter that balances fitting error and model complexity. 𝑙 
is the number of data points under a single snapshot. 

 

For the problem described above, a Lagrangian function is introduced, resulting in the following equation: 

 𝐿(𝑤, 𝑏, 𝜉𝑖 , 𝛼) = 𝐽 − ∑ 𝛼𝑖[𝑤𝐻𝜑(𝑥𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖]𝚤
𝑖=1  (5) 

In the formula,  represents the Lagrange multipliers. Based on the optimization conditions, taking partial 

derivatives with respect to  results in: 

 

𝜕𝚤

𝜕𝑤
= 0 ⇒ 𝑤 = ∑ 𝛼𝑖𝜑(𝑥𝑖)𝚤

𝑖=1

𝜕𝚤

𝜕𝑏
= 0 ⇒ ∑ 𝛼𝑖

𝚤
𝑖=1 = 0

𝜕𝚤

𝜕𝜉𝑖
= 0 ⇒ 𝛼𝑖 = 𝐶𝜉𝑖    𝑖 = 1, … , 𝚤

𝜕𝚤

𝜕𝛼𝑖
= 0 ⇒ 𝑤𝐻𝜑(𝑥𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖 = 0   𝑖 = 1, … , 𝚤

 (6) 

To find the optimal values of  and 𝑏, the KKT conditions yield: 

 [
0 𝐼′

𝐼 𝐾 + 𝛾−1𝐼
] [

𝑏
𝛼

] = [
0
𝑦

] (7) 

In the above equation, 𝑦 = [𝑦1 , . . . , 𝑦𝑙]𝐻 ; ; 𝐼 = [𝐼1, . . . , 𝐼𝑙]𝐻 ; 𝐾  is the kernel matrice, where 𝐻 

denotes the conjugate transpose symbol. The element at the i-th row and j-th column is 𝐾𝑖𝑗 =

〈𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗)〉, 𝑖, 𝑗 = 1, … , 𝚤 . Finally, substituting  and b, which are solved from the linear system, into the least 

squares regression function is: 

 𝑓(𝑥) = 𝑤𝐻𝜑(𝑥) + 𝑏 = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝚤
𝑖=1  (8) 

By introducing kernel function theory, it transforms the problem into high-dimensional feature space, turning it 

into a linear problem solution in high-dimensional space. The optimization problem is mapped to high-dimensional 

feature space for discussion; according to VC dimension theory, the high-dimensional feature space may be 

infinite-dimensional. Therefore, an explicit representation of the nonlinear mapping 𝜑()is difficult, thus posing 

practical computational challenges. Kernel functions provide a feasible means for computations in high-

dimensional spaces, involving only inner product operations for data points in the input space, introducing kernel 

functions that satisfy Mercer's condition allows the results of inner product operations in high-dimensional spaces 

74



 
                                                                                                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

World Journal of Innovation and Modern Technology, Vol. 8, Issue 1, (Jan)
ISSN 2682-5910 20242025  

  
  

  

  

 
  

to be directly defined in low-dimensional spaces. 

 𝐾𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗) = 〈𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗)〉 (9) 

Because the Least Squares Support Vector Machine transforms the complex solution of the convex quadratic 

programming problem of the classic Support Vector Machine into the solution of a system of linear equations, this 

greatly simplifies the computational complexity and increases the speed of solution. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Simulation Analysis of LSSVM Beamforming Under Different Signal-to-noise Ratios with Array 

Position Mismatch  

 

Compared to conventional beamforming, the advantages of LSSVM beamforming include narrower mainlobe 

widths and lower sidelobe levels, providing theoretical support for further engineering applications. Below, a 

comparative analysis is conducted of the LSSVM beamforming performance versus Conventional Beamforming 

(CBF) under far-field conditions with a uniform horizontal line array. 

 

The simulation environment consists of a 30-element horizontal line array in a far-field setting, with a sound speed 

of 1500 m/s, a sampling frequency of 10 kHz, a half-wavelength array, a 1 kHz single-frequency sound source, 

and Gaussian additive noise. The angle of arrival is 10 degrees. At signal-to-noise ratios of 10, 0, and -10 dB, 

LSSVM uses a Gaussian kernel. Here, the effects of LSSVM beamforming are compared with those of 

conventional beamforming. 

 

The results of the beamforming are shown in Figure 2 below. 

  
(a)                                                                                   (b) 

 
(c) 

Figure 2: Comparison of LSSVM beamforming effects with conventional beamforming at different signal-to-

noise ratios 
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The statistics for the mainlobe width and the first sidelobe level are shown in Table 1 below. 

Table 1: Experimental data for LSSVM beamforming versus conventional beamforming at different signal-to-

noise ratios 

SNR Mainlobe width The first sidelobe level 
10dB(CBF) 4.5° -13.59 dB 

10dB(LSSVM) 2° -20.54dB 

0dB(CBF) 4.5° -13.59dB 

0dB(LSSVM) 2° -20.49dB 

-10dB(CBF) 4.5° -13.06dB 

-10dB(LSSVM) 2° -21.19dB 

 

From the above statistical results, it is evident that LSSVM beamforming has a narrower mainlobe width and lower 

first sidelobe level compared to Conventional beamforming. 

 

3.2 Simulation Analysis of SVM Beamforming with Different Kernel Functions 

 

Next, we analyze the impact of different kernel functions on the beam patterns of the learned steering vectors. 

Figure 3 below shows the effects of LSSVM beam patterns with different kernel functions at the same signal-to-

noise ratio. 

 
Figure 3: Effects of steering vector beam patterns under different types of kernel functions at the same signal-to-

noise ratio 

Under linear, Gaussian, and Laplacian kernels, the first sidelobe levels of beamforming are -6.87, -12.96, and -

13.75 dB, respectively. It is evident that different kernel functions have a significant impact on LSSVM learning. 

The proper learning and selection of kernel functions affect the quality of the beamformer's performance. 

Designing appropriate kernel functions is an important direction for future development. 

 

4. CONCLUSION 
 

This paper explains the principles of the LSSVM algorithm, derives the design process of the LSSVM beamformer, 

and highlights the advantages of the LSSVM algorithm compared to traditional beamforming algorithms. 

Simulations were conducted to compare LSSVM beamforming with conventional beamforming at different signal-

to-noise ratios, and the differences in beam patterns of LSSVM beamforming with different kernel functions were 

analyzed. The feasibility of applying the LSSVM method to beamforming techniques was demonstrated. This 

provides theoretical support for further engineering applications. 
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