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Abstract: In this paper, the core role of mathematics in cryptography is deeply discussed, and how the mathematical 

branches such as number theory, group theory and elliptic curve theory provide solid theoretical foundation and 

construction methods for cryptography algorithms is elaborated in detail. By analyzing the mathematical principles of 

classical and modern cryptosystems, this paper reveals the mathematical mysteries behind the technology from simple 

alternative encryption to advanced public key encryption, and shows the key applications of mathematical tools in ensuring 

information security, realizing secure communication, digital signature and key exchange, etc., providing in-depth insights 

from the mathematical perspective for further understanding and development of cryptography technology.  
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1. INTRODUCTION 
 

As an ancient and modern subject, cryptography is devoted to the study of information encryption, decryption and 

communication security, and its development is closely related to mathematics. Mathematical theory is the 

theoretical basis supporting cryptography technology, and the in-depth study of mathematical theory is the premise 

and basis to ensure the security of cryptography algorithms [1]. In 1949, Shannon, an American mathematician, 

introduced information theory into cryptography in her article Information Theory of Security Systems [2], and 

proposed the theory of symmetric key cryptosystem, which laid a solid theoretical foundation for cryptography. In 

1976, Diffie and Hellman, in New Directions in Cryptography [3], demonstrated for the first time that secure 

communication is possible with keyless transmission between the sender and receiver, ushering in a new era of 

public key cryptography. In 1977, the National Bureau of Standards (NIST) of the United States announced the 

data encryption standard [4] developed by IBM, referred to as DES. It is the most commonly used encryption 

algorithm for commercial secure communications and computer communications in the world. In the mid-1880s, 

Neal Koblitz [5] and Victor Miller [6] both introduced elliptic curves into cryptography and independently 

proposed elliptic curve cryptography ECC. In 1984, Bennett and Brassard proposed the first quantum 

cryptographic protocol, the BB84 scheme [7], and a new member of cryptography was born. In 2001, the National 

Institute of Standards and Technology officially announced the Advanced Encryption Standard AES [8]. 

Subsequently, countries such as Europe, Japan, and South Korea also launched the collection of cryptographic 

standards, and cryptography entered a period of prosperity and development. 

 

2. THE KEY POSITION OF MATHEMATICAL FOUNDATION IN 

CRYPTOGRAPHY 
 

2.1 Number Theory: The Cryptographic Value of Integer Properties 

 

Number theory mainly studies the properties and laws of integers and has a wide and profound application in 

cryptography. For example, Euclidean algorithm to find the greatest common divisor (GCD) is an important 

fundamental step of RSA algorithm. The RSA algorithm takes advantage of the number theoretic property that it is 

easy to multiply two large prime numbers, but extremely difficult to factor their product. Given two large prime 

numbers \(p\) and \(q\), calculating \(n = pq\) is quick and easy, but it is computationally almost impossible to 

factor \(p\) and \(q\) when \(p\) and \(q\) are large enough. This ensures the security of cryptographic systems built 

on \(n\). 

 

2.2 Group Theory: The Structural Cornerstone of Symmetric Encryption 

 

A group in group theory is a set with specific operational rules and properties. In symmetric encryption algorithms 
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such as AES (Advanced Encryption Standard), byte substitution and substitution operations can be viewed as 

operations on specific finite field group structures. By defining appropriate addition and multiplication rules, bytes 

can be confused and diffused after a series of group operations, so as to achieve the purpose of encrypting data. The 

encryption operation based on group structure ensures the reversibility of the encryption process (decryption by 

corresponding reverse operation) and the resistance to various attacks. Its rigorous group operation rules provide a 

clear logical framework and strong encryption ability for the design of encryption algorithms. 

 

2.3 Elliptic Curve Theory: Mathematical Frontiers of Emerging Cryptographic Applications 

 

Elliptic curve cryptography (ECC) is based on the elliptic curve discrete logarithm problem (ECDLP), which 

provides comparable or even higher security at shorter key lengths than traditional cryptography based on integer 

decomposition or discrete logarithm problems. The points of an elliptic curve over a finite field form an Abelian 

group with a unique addition rule, and cryptography takes advantage of the relatively easy scalar multiplication of 

points over this group, but given two points, finding their discrete logarithm (i.e., satisfying \(k\) in \(Q = kP\), 

Where \(P,Q\) is a point on an elliptic curve), this property is very difficult. This makes elliptic curve 

cryptosystems a significant advantage in resource-constrained environments (e.g., mobile devices, iot devices), as 

shorter keys can be used to achieve high-strength encryption, reducing computational overhead and storage 

requirements, while maintaining password security. 

 

3. ANALYSIS OF MATHEMATICAL PRINCIPLES OF CLASSICAL 

CRYPTOSYSTEM 
 

3.1 Caesar Cipher: Mathematical Description of Simple Shift Transformations 

 

Caesar cipher is a simple alternative encryption method, which replaces each letter of the plaintext by a fixed 

number of digits. From a mathematical point of view, this can be precisely described by modular operations. 

Suppose the alphabet have \ n \ () A letter (e.g., English letters \ (n = 26 \)), the shift key for \ \) (k, for clear letters 

\ \ (x) (with digital \ \ (0) to the \ \ (n - 1), said \ \) (A = 0, for example, \ (B = 1 \), etc.), The encrypted ciphertext \(y\) 

can be expressed as \(y=(x + k)\bmod n\). This simple mathematical transformation provided a certain degree of 

confidentiality at the time, but because its key space was too small (only \(n\) possible shifts), it was easy to crack 

by brute force, and is a simple example of the early application of mathematics in cryptography, showing the basic 

mathematical abstract form of the encryption process. 

 

3.2 Virginia Cipher: Mathematical Logic of Multi-Table Encryption 

 

The Virginia cipher encrypts the plaintext by using a combination of multiple Caesar ciphers, with the key being a 

sequence of letters. Let the plaintext be \(m = m_1m_2\cdots m_l\), the key be \(k = k_1k_2\cdots k_d\) (length 

\(d\)), when encrypting, Cipher \ (c = c_1c_2 \ cdots c_l \) each character in the \ (c_i \) by \ (c_i = k_ (m_i + {j}) \ 

n \ bmod) calculated, including \ (j = I \ \ d bmod). This multi-table encryption method increases the complexity of 

the key space and password, and is more difficult to crack than the Caesar cipher. However, with the development 

of mathematical analysis methods, it is still possible to carry out effective attacks on ciphertext by means of 

frequency analysis and key length prediction. This reflects the reverse role of mathematical methods in 

cryptanalysis, that is, by revealing the mathematical logic of the encryption process to find a way to crack, and 

promotes the development of cryptography from simple encryption to more complex and more secure encryption 

methods. 

 

4. THE MATHEMATICAL MAGIC OF MODERN CRYPTOGRAPHY 
 

4.1 RSA Algorithm: The Number Theoretic Wonder of Public Key Cryptography 

 

The core of RSA algorithm lies in Euler's theorem and modular power operation in number theory, and its 

exquisite mathematical structure realizes the separation of encryption and decryption process, which lays a solid 

foundation for modern secure communication. First choose two large prime Numbers \, p \ and \ \ (q), computing \ 

(n = pq \) and euler function \ (\ varphi (n) = (p - 1) (q 1) \). Then choose an integer \(e\) that is prime to \(\varphi(n)\) 

as part of the public key, where \(e\) must meet certain conditions. For example, (1 < < e, varphi (n) and \ \) (GCD 

(e \ varphi (n)) = 1 \) (\ greatest common divisor (GCD) \ said). Then by extending Euclid's algorithm to find \(d\) 

such that \(ed\equiv 1\bmod\varphi(n)\), that \(ed = k\varphi(n)+1\) (\(k\) is an integer), \(d\) is the private key. 
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The encryption process is \(c = m^e\bmod n\) (where \(m\) is plaintext), this step takes advantage of the 

unidirectivity of modular exponentiation, and it is difficult to backmap the plaintext \(m\) from the ciphertext \(c\) 

without knowing the private key. Decryption is \ (m = c ^ d \ n \ bmod), its validity is based on euler's theorem: if 

\ (a) \ \ n \ co-prime, is \ (a ^ {\ varphi (n)} n \ \ 1 \ bmod equiv). For the encrypted cryptograph \ (c = m ^ e \ n \ 

bmod), when the decryption \ (c ^ d = (m ^ e) = m ^ ^ d {of} Ed \), due to the \ \ varphi (Ed = k (n) + 1 \), so the \ (m 

^ {of} Ed = m ^ {k \ varphi (n) + 1} \). When \ [m \ with the \ n \) co-prime, according to euler's theorem is \ (m ^ 

{\ varphi (n)} n \ \ 1 \ bmod equiv), is \ (m ^ {k \ varphi (n)} n \ \ 1 \ bmod equiv), So \ (m ^ {k \ varphi (n) + 1} \ \ 

bmod equiv m n \), which successfully restore clear \ [m \). When \(m\) and \(n\) are not mutually prime, which is 

very rare and can be dealt with by some technical means, the correctness of the decryption can be proved by similar 

number theoretic reasoning. 

 

Its security depends on the difficulty of factoring large integers, which mathematically guarantees that the plaintext 

\(m\) cannot be easily derived from the public key \(e\) and \(n\) without knowing the private key \(d\). With the 

improvement of computer computing power, in order to ensure the security of RSA algorithm, the number of 

prime numbers \(p\) and \(q\) is also increasing, and it is recommended to use at least 2048 bits \(n\). RSA 

algorithm provides a reliable foundation for secure transmission (such as data encryption in HTTPS protocol) and 

digital signature in modern network communication. It is one of the most representative successful applications of 

mathematical theory in cryptography, realizing a major breakthrough in public key cryptography, and changing the 

mode of traditional cryptography that encryption and decryption keys must be the same and need to be shared in 

secret. It has greatly promoted the development of e-commerce, e-government and other fields, making secure 

remote communication and data exchange possible. 

 

4.2 Diffie-Hellman Key Exchange: Secure Negotiation of Discrete Logarithms 

 

Diffie-Hellman key exchange is based on the discrete logarithm problem, which solves the difficult problem of 

secure key sharing negotiation between two communication parties on insecure channels. The communicating 

parties (Alice and Bob) choose a common large prime \(p\) and a generator \(g\) (\(g\) is the primary root of \(p\)), 

which has important mathematical properties, that is, for \(1\leqslant i\leqslant p-1 \), The result of \(g^i\bmod p\) 

varies, producing a complete sequence of loops from \(1\) to \(p-1 \). 

 

Alice selects a secret integer \(a\) and computes \(a = g^a\bmod p\) to send to Bob, and Bob selects the secret 

integer \(b\) and computes \(b = g^b\bmod p\) to send to Alice. Then Alice calculation \ (s = B ^ a \ bmod p = (g ^ 

B) ^ ^ a \ bmod p = g {ab} \ bmod p \), Bob calculation \ (s = ^ B \ bmod p = (g ^ a) ^ ^ B \ bmod p = g {ab} \ bmod 

p \), The \(s\) obtained by both parties is the same and can be used as a shared session key for subsequent encrypted 

communications. 

 

Due to the discrete logarithm problem (known \ \ (g), A \ [p \) and \ [g ^ x \ bmod p \ \ \) (x) on the computing 

difficulty, even if the attacker had intercepted \ (A) \ and \ [B \), is also difficult to deduce the \ (A) \ and \ [B \) to 

get the Shared secret \ (\ s). Currently, for large prime numbers \(p\), the solution of the discrete logarithm problem 

is computationally time-consuming, making Diffie-Hellman key exchange relatively secure in practical 

applications. This key exchange method cleverly uses the discrete logarithm problem in number theory to solve the 

problem of secure negotiation of shared keys on insecure channels. It is a key technology in modern cryptography 

to ensure the initial stage of communication security, and supports the key establishment process in many network 

protocols, such as IPsec (IP security protocol) and TLS (Transport layer security protocol). The secure 

communication can be realized in an open network environment, which provides an important guarantee for the 

confidentiality and integrity of network communication. It is widely used in various network application scenarios, 

from enterprise-level remote office systems to ordinary users' online banking transactions and social media 

communications, etc., to ensure the privacy protection of data in the transmission process. 

 

5. APPLICATION EXPANSION AND CHALLENGE OF MATHEMATICAL TOOLS 

IN CRYPTOGRAPHY 
 

5.1 Changes in Cryptography Mathematics in the Era of Quantum Computing 

 

With the rapid development of quantum computing technology, traditional cryptosystems based on mathematical 

problems (such as large integer decomposition in RSA, discrete logarithm problem, etc.) are faced with 

unprecedented severe challenges. Quantum computers use quantum bits and quantum gates to handle a large 
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number of computing tasks in parallel, and their computing power has been exponentially improved compared to 

traditional computers. For the large integer decomposition problem that RSA relies on, quantum computers can 

run the Shor algorithm to complete the decomposition in polynomial time, which makes many existing 

cryptographic algorithms vulnerable in the quantum computing environment. 

 

This change has prompted the cryptography community to actively explore cryptosystems based on new 

mathematical problems or quantum resistance. For example, lattice based cryptography, a lattice is a discrete set of 

points in a \(n\) dimensional space with rich mathematical structure and complex geometric properties. 

Lattice-based cryptosystems take advantage of difficult problems in lattices, such as the shortest vector problem 

(SVP) and the nearest vector problem (CVP). Mathematically, given a lattice basis (a set of linearly independent 

vectors generating a lattice), finding the shortest non-zero vector in a lattice or the nearest vector in a lattice to a 

given vector are computationally difficult problems, and are considered to have a high level of security even in 

quantum computing environments. 

 

The mathematical principles of lattice cryptography involve the integration of complex geometric, algebraic and 

number theory knowledge. In the aspect of algorithm design, it is necessary to deeply study the lattice structure, 

such as how to construct appropriate lattice bases, so that the cryptographic algorithms based on these lattice bases 

are both secure and efficient. At the same time, algorithms on the lattice, such as the lattice basis reduction 

algorithm (such as LLL algorithm and its variants), need to be continuously optimized to improve the 

computational efficiency while ensuring their security in cryptography applications. In addition, it is also 

necessary to study the compatibility of lattice cryptography with other cryptographic requirements, such as key 

management, digital signature, homomorphic encryption and other functions, in order to build new encryption 

algorithms and protocols that can resist quantum attacks. 

 

Multivariable cryptography is also a research direction of quantum resistant cryptosystems, which is based on the 

solution of multivariable polynomial equations over finite fields. In a multivariable cryptosystem, the encryption 

process maps the plaintext to the solution of a set of multivariable polynomial equations, while decryption is 

solving those equations to recover the plaintext. Since solving multivariable polynomial equations is NP-hard in 

general, it has certain security even in the face of the powerful computing power of quantum computers. However, 

multivariable cryptography is faced with the problems of large key size and relatively low algorithm efficiency, so 

it needs to be further optimized from mathematical theory and algorithm design, such as clever selection of 

polynomial forms and optimization of solving algorithms, so as to improve its feasibility and performance in 

practical applications. 

 

Quantum key distribution (QKD) uses the principle of quantum mechanics to achieve secure key distribution. Its 

core principles are based on the non-cloning theorem of quantum states and the Heisenberg uncertainty Principle. 

In the QKD process, the two communication parties transmit quantum states (such as the polarization state of 

photons, etc.) through quantum channels, and use classical channels to assist information exchange and key 

negotiation. Due to the special properties of quantum states, any eavesdropping behavior on quantum states will 

inevitably introduce interference. Communication parties can detect whether there is eavesdropping by detecting 

the integrity of quantum states, so as to ensure the security of key distribution. From a mathematical point of view, 

QKD involves the knowledge of quantum information theory, probability theory, error correction code and other 

mathematical fields, and needs to accurately design the coding, transmission, measurement and key extraction 

processes of quantum states to maximize the key generation rate and minimize the bit error rate, while ensuring 

security. This represents the innovative development direction and key research hotspot of mathematics in the field 

of cryptography in response to the challenges of emerging technologies, and provides new hopes and solutions for 

information security in the post-quantum era. 

 

5.2 Optimization of Mathematical Efficiency in Cryptography Applications 

 

In practical applications, cryptographic algorithms should not only ensure security, but also fully consider 

computing efficiency and storage efficiency to meet diverse requirements in different scenarios. For example, 

encryption applications on mobile devices or iot devices have more demanding performance requirements for 

cryptographic algorithms due to their limited resources (computing power, battery power, storage space, etc.). 

 

Taking elliptic curve cryptosystem (ECC) as an example, optimizing the dot multiplication algorithm is very 

important in resource-constrained environment. The dot product operation (i.e. \(kP\), where \(k\) is an integer and 

\(P\) is a point on an elliptic curve) is one of the most time-consuming operations in ECC. The calculation 
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efficiency can be significantly improved by selecting a suitable coordinate system. In affine coordinate system, the 

addition and multiplication of elliptic curve points need to carry out complex fraction operation, which involves 

inverting operation, and the calculation cost is high. By introducing additional coordinate components, the 

projective coordinate system can represent the elliptic curve equation in a homogeneous way, so that the addition 

and multiplication of points can be transformed into simpler integral operations, avoiding frequent inverse 

operations, and thus greatly improving the calculation speed. 

 

In addition, computational techniques such as Montgomery algorithm and window algorithm can be used to further 

optimize the dot multiplication operation. Montgomery algorithm makes use of the special property of elliptic 

curve point operation, and reduces the number of multiplication operations in the process of point multiplication 

by precalculation and clever transformation. The window algorithm represents the integer \(k\) as a binary window 

form. By calculating some fixed multiples of points (such as \(2^iP\)) in advance, the corresponding predicted 

points are quickly selected for addition operation according to the window value during the dot multiplication 

process, which reduces the actual number of point operations. 

 

In symmetric encryption, it is also necessary to use mathematical optimization method to improve the efficiency of 

encryption. For example, in AES algorithm, the performance is improved by improving the wheel function design. 

Operations such as byte substitution, row shifting, and column obfuscation in a round function can be viewed as 

linear and nonlinear transformations over a particular finite field. By optimizing the matrix representation and 

operation order of these transformations, using mathematically fast algorithms (such as fast multiplication 

algorithms over finite fields), it is possible to reduce the amount of computation for each round of encryption, 

thereby increasing the overall encryption speed. At the same time, for large-scale data encryption scenarios, such 

as data storage encryption in the cloud computing environment, it is also necessary to consider how to use parallel 

computing, distributed computing and other technologies combined with cryptography algorithms. 

Mathematically, this involves task decomposition and the design of collaborative computing strategies. For 

example, a large data block can be divided into multiple subblocks, which are encrypted in parallel on different 

computing units, and then the encryption results of each subblock are integrated into the final ciphertext by 

appropriate mathematical methods (such as key management and ciphertext merging algorithm). Or the use of data 

redundancy and coding technology in distributed computing, combined with cryptographic encryption algorithms, 

to improve the overall efficiency of encryption under the premise of ensuring data security, in order to meet the 

diversified needs of practical applications for cryptographic performance. This is an important research topic in the 

field of mathematics application in cryptography engineering, which is related to whether cryptography 

technology can be widely and efficiently deployed and applied in various practical scenarios, and is of great 

significance for promoting the security development of information technology. 

 

6. CONCLUSION 
 

As the cornerstone and soul of cryptography, mathematics runs through the development of cryptography. From 

the simple transformation of classical cryptography to the complex structure of modern cryptography, every major 

breakthrough in cryptography relies on the innovation and application of mathematical theory. Number theory, 

group theory, elliptic curve theory and other mathematical branches provide rich tools and solid theoretical support 

for cryptography algorithms, so that cryptography can play a key role in the field of information security, to cope 

with increasingly complex security threats and diversified application needs. However, with the continuous 

progress of technology, especially the arrival of the era of quantum computing, cryptography is facing new 

challenges and opportunities, requiring mathematicians and cryptographers to work closely together, continue to 

explore new mathematical principles and methods, optimize existing algorithms, develop quantum resistant 

cryptography, open a new chapter of cryptography with mathematical wisdom, and continue to protect the security 

and privacy of the information world. To ensure that in the ever-changing wave of technology, the mysterious 

power of cryptography can always be accurately harnelled to escort human digital life. 

 

REFERENCES 
 

[1] Zhang Anyuan. Research on Several Mathematical Problems in Advanced Data Encryption Standard [D]. 

Xidian University,2011.  

[2] Claude Elwood Shannon. Communication theory of secrecy systems [J]. Bell System Technical Joumal, 

1949,28: 656-715. 

[3] Whitfield Diffie, Martin E. Holmall. New directions in cryptography [J]. IEEE Transactions on Information 

Theory,1976,22(6):644-654. 

61



 
                                                                                                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

World Journal of Innovation and Modern Technology, Vol. 8, Issue 1, (Jan)
ISSN 2682-5910 20242025  

  
  

  

  

 
  

[4] National Bureau of Standards. Data Encryption Standard [J]. Federal Information Processing Stan (lard, U. S. 

Department of Commerce, FIPS PUB 46, Washington, DC, 1977. 

[5] Neal Koblitz Elliptic curve cryptosystems [J]. Mathematics of Computation, 1987,48:203-209. 

[6] Victor S.Miller. Uses of elliptic curves in cryptography [J]. Advances in Cryptology - CRYPTO '85, Springer 

- Verlag, LNCS218, 1986417-426. 

[7] Charles H Bennett, Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing [J]. 

Processing of the lEEE International Conference on Computers Systems and Signal Processing, Bangalore 

India, 1984,12:175-179. 

[8] National Institute of Standards and Technology. Federal Information Processing Standards Publication 197. 

Specification for the Advanced Encryption Standard.2001 

62


