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Abstract: This paper presents a new deep learning-based resource scheduling algorithm for online video chat. The 

framework addresses the issues of resource allocation efficiency and service efficiency in MCU environments. A 

comprehensive system architecture is designed, incorporating a unified resource pool and intelligent scheduling 

mechanisms. The deep reinforcement learning model employs an actor-critic network structure with custom-designed state 

space and reward functions optimized for video conferencing workloads. The framework uses adaptive resource allocation 

and load balancing techniques to ensure stability in heterogeneous systems. The experimental results show a significant 

improvement over traditional methods, achieving a 35.2% reduction in response time, a 28.7% increase in resource 

utilization, and a 23.5% improvement in performance. bandwidth. The system maintains consistent performance under high 

loads of up to 1000 users at the same time while ensuring 99.99% service. The solution provides a flexible and powerful way 

to control the cloud video conferencing, as well as potential applications in the delivery of large-scale business.  

 

Keywords: Deep Reinforcement Learning; Cloud Computing; Video Conferencing; Resource Scheduling.  

 

1. INTRODUCTION 
 

1.1 Background of Cloud Video Conferencing 

 

Cloud video conferencing has become an important communication tool for modern businesses and organizations. 

The rapid development of cloud technology has transformed the video conferencing process into more 

sophisticated and flexible solutions [1]. These systems use cloud technology to provide high-quality video 

communication services while managing computing and network usage. 

 

The evolution from traditional MCU (Multipoint Control Unit) based systems to cloud-based architectures has 

introduced significant improvements in resource utilization and system scalability. Modern cloud video 

conferencing platforms employ distributed resource pools that integrate various MCUs into a unified logical 

system [2]. This architecture enables dynamic resource allocation and improved system reliability through 

automated backup mechanisms. 

 

Recent advances in cloud computing and virtualization technologies have enabled the development of private 

cloud solutions specifically designed for video conferencing applications. These solutions offer enhanced security, 

better resource control, and improved quality of service compared to public cloud alternatives. The integration of 

cloud computing with video conferencing has also facilitated the implementation of intelligent resource 

management strategies [3] [4] [5]. 

 

1.2 Challenges in Resource Management 

 

Resource management in cloud video conferencing systems presents several critical challenges. The dynamic 

nature of network conditions and user demands requires sophisticated scheduling algorithms to maintain optimal 

performance [6]. One significant challenge is the efficient allocation of MCU resources across distributed pools 

while ensuring minimal latency and maximum resource utilization. 

 

The difference in video conferencing work reflects the difficulty in scheduling. Different conferences can have 

different video quality, number of participants, and networking events. Traditional scheduling systems often 
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struggle to handle these different situations efficiently, resulting in suboptimal resource utilization and poor user 

experience [7]. 

 

Network bandwidth fluctuations and varying connection qualities among participants pose additional challenges. 

The system must adaptively adjust resource allocation strategies to maintain acceptable video quality while 

preventing network congestion. Furthermore, the need for real-time processing and low-latency communication 

adds constraints to resource scheduling decisions. 

 

Load balancing across multiple MCUs remains a critical challenge in distributed environments. Uneven 

distribution of conference loads can lead to performance bottlenecks and reduced system efficiency. The system 

must also handle hardware failures and network disruptions through effective backup strategies while maintaining 

service continuity [8]. 

 

1.3 Deep Reinforcement Learning Overview 

 

Deep Reinforcement Learning (DRL) has emerged as a promising method for solving complex decision-making 

problems in dynamic environments. In the context of cloud video conferencing, DRL has a data-driven framework 

for optimizing service decisions based on real-time system state and performance feedback [9]. 

 

DRL combines deep neural networks with reinforcement learning principles to learn optimal policies through 

interaction with the environment. The learning agent observes the system state, takes actions, and receives rewards 

based on the resulting performance. Through this iterative process, the agent learns to make decisions that 

maximize long-term cumulative rewards [10] [11]. 

 

Recent research has demonstrated the effectiveness of DRL in various aspects of cloud resource management. In 

video conferencing systems, DRL can learn to adapt bitrate selection, manage MCU resources, and optimize 

network utilization based on observed performance metrics and network conditions. The ability to learn from 

experience makes DRL particularly suitable for handling the dynamic and complex nature of video conferencing 

environments [12] [13] [14] [15]. 

 

1.4 Research Objectives and Contributions 

 

This research addresses the challenges of resource management in cloud video conferencing systems through a 

novel DRL-based approach. The primary objective is to develop an adaptive scheduling framework that optimizes 

resource utilization while maintaining a high quality of service for all participants [16] [17]. 

 

The proposed framework incorporates a deep reinforcement learning model specifically designed for MCU 

resource scheduling in distributed environments. The model considers multiple factors, including network 

conditions, user requirements, and system load, to make intelligent allocation decisions. A key contribution is the 

development of a comprehensive state representation and reward function that captures the complex requirements 

of video conferencing applications [18]. 

 

The research introduces innovations in both the system architecture and learning algorithm design. A distributed 

resource pool architecture is proposed to enable flexible resource sharing across different organizational levels. 

The DRL algorithm incorporates novel features for handling the unique characteristics of video conferencing 

workloads, including mechanisms for load balancing and fault tolerance [19]. 

 

Performance evaluation demonstrates significant improvements over traditional scheduling approaches in terms 

of resource utilization, video quality, and system reliability. The research also provides insights into the practical 

implementation of DRL-based solutions in production video conferencing systems, addressing important 

considerations such as training stability and runtime efficiency. 

 

This work advances the state-of-the-art in cloud video conferencing systems by demonstrating the feasibility and 

benefits of applying deep reinforcement learning to resource management challenges. The findings contribute to 

both theoretical understanding and practical implementation of intelligent resource scheduling in distributed video 

conferencing environments. 
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2. SYSTEM ARCHITECTURE AND PROBLEM FORMULATION 
 

2.1 Cloud Video Conferencing System Model 

 

The cloud video conferencing system adopts a distributed architecture integrating multiple MCUs into a unified 

resource pool. The system model consists of three primary layers: the user access layer, the resource management 

layer, and the infrastructure layer [20]. Table 1 presents the key components and their functionalities in each layer. 

Table 1: System Layer Components and Functions 

Layer Components Key Functions 

Access Layer Client terminals, Web interfaces User authentication, Video encoding/decoding 

Resource Layer MCU scheduler, Load balancer Resource allocation, Traffic management 

Infrastructure Layer Computing nodes, Network links Processing, Data transmission 

 

The system processes video streams through a pipeline of operations, with performance metrics monitored at each 

stage. Table 2 shows typical processing latencies measured across different system components. 

Table 2: Processing Latency Statistics (milliseconds) 

Component Minimum Average Maximum Standard Deviation 

Video Encoding 15 25 45 8.3 

Network Transmission 20 35 60 12.1 

MCU Processing 30 45 75 15.6 

Video Decoding 12 20 40 7.8 

 
Figure 1: Cloud Video Conferencing System Architecture 

The system architecture diagram illustrates the interconnections between different components and data flows. 

The diagram uses a hierarchical layout with color-coded modules representing different functional units. The 

access layer is shown in blue at the top, the resource layer in green in the middle, and the infrastructure layer in 

orange at the bottom. Bidirectional arrows indicate data flows, with line thickness proportional to bandwidth 

requirements. 

 

2.2 Resource Pool Architecture 

 

The MCU resource pool implements a hierarchical structure with multiple levels of management and control. 

Table 3 details the resource allocation priorities and constraints at each level. 

Table 3: Resource Pool Hierarchy Configuration 

Level Management Scope Resource Capacity Backup Ratio 

Global Cross-regional 1000 concurrent users 1:3 

Regional Single region 500 concurrent users 1:2 

Local Single datacenter 200 concurrent users 1:1 

 

Load distribution across the resource pool is continuously monitored and optimized. Table 4 presents the load 

balancing thresholds and corresponding actions. 
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Table 4: Load Balancing Parameters 

Load Level CPU Utilization Memory Usage Action Triggered 
Normal <70% <65% Regular scheduling 
Warning 70-85% 65-80% Load redistribution 
Critical >85% >80% Emergency backup 

 
Figure 2: Resource Pool Load Distribution Visualization 

The visualization presents a multidimensional analysis of resource utilization across the pool. The x-axis represents 

time in hours, the y-axis shows resource utilization percentage, and the z-axis indicates different MCU nodes. A 

color gradient from blue to red represents load intensity. Multiple data series are plotted to show CPU, memory, 

and network utilization patterns. 

 

2.3 State and Action Space Definition 

 

The state space encompasses multiple system parameters monitored in real time. Each state vector S(t) is defined 

as: 

 

S(t) = [CPU(t), MEM(t), BW(t), LOAD(t), QOS(t)] 

 

where each component represents normalized values between 0 and 1. 

 
Figure 3: State-Action Mapping Visualization 

The visualization demonstrates the relationship between system states and corresponding actions. A 3D scatter 

plot shows state vectors as points in the state space, with colors indicating different action clusters. The plot 

includes decision boundaries computed by the DRL model, represented as semi-transparent surfaces. 

 

2.4 Reward Function Design 

 

The reward function R(t) integrates multiple performance metrics with weighted importance: 
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R(t) = w1 * QoE(t) + w2 * ResourceEfficiency(t) - w3 * Cost(t) 

 

Where: 

 

QoE(t) measures user experience quality 

 

ResourceEfficiency(t) evaluates resource utilization 

 

Cost(t) represents operational expenses 

 

The weights w1, w2, and w3 are determined through extensive experimentation and validation. Each component 

is normalized to ensure a balanced contribution to the overall reward signal. 

 

This reward function design balances the trade-offs between service quality and resource efficiency while 

considering operational costs. The function incorporates both immediate performance metrics and long-term 

optimization objectives, enabling the DRL agent to learn policies that maintain high service quality while 

maximizing resource utilization [21] [22]. 

 

3. DEEP REINFORCEMENT LEARNING ALGORITHM DESIGN 
 

3.1 Network Architecture 

 

The deep reinforcement learning model employs a dual-network architecture consisting of an actor-network and a 

critic network. Table 5 outlines the detailed network structure specifications. 

Table 5: Neural Network Architecture Parameters 

Layer Actor-Network Critic Network 

Input Layer 128 neurons 128 neurons 

Hidden Layer 1 256 neurons (ReLU) 512 neurons (ReLU) 

Hidden Layer 2 128 neurons (ReLU) 256 neurons (ReLU) 

Hidden Layer 3 64 neurons (ReLU) 128 neurons (ReLU) 

Output Layer Nine actions (Softmax) One value (Linear) 

 

The actor-critic architecture incorporates residual connections and layer normalization to enhance training stability. 

Table 6 presents the hyperparameters used in the network optimization process. 

Table 6: Network Training Hyperparameters 

Parameter Value Description 

Learning Rate 3.5e-4 Adam optimizer 

Discount Factor 0.99 Future reward discount 

Entropy Coefficient 0.01 Exploration control 

Value Loss Coefficient 0.5 Critic loss weight 

 
Figure 4: Deep Neural Network Architecture Diagram 
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The architecture diagram illustrates the complete network structure with detailed layer connections. The 

visualization employs a hierarchical layout showing both actor and critic networks side by side. Each layer is 

represented by rectangles with width proportional to neuron count, connected by arrows indicating data flow. Color 

gradients represent activation functions, with darker shades indicating higher activation values. 

 

3.2 Training Process 

 

The training process implements a modified Proximal Policy Optimization (PPO) algorithm with experience replay. 

The data collection and training phases are executed in parallel to maximize efficiency. Table 7 shows the training 

performance metrics across different epochs. 

Table 7: Training Performance Metrics 

Epoch Average Reward Policy Loss Value Loss KL Divergence 

100 156.3 0.0245 0.0183 0.0067 

500 283.7 0.0189 0.0142 0.0052 

1000 425.2 0.0156 0.0118 0.0043 

5000 587.9 0.0123 0.0095 0.0038 

 
Figure 5: Training Convergence Analysis 

The convergence analysis visualization presents multiple metrics tracked during training. The plot includes four 

subplots arranged in a 2x2 grid: reward curve (top left), policy loss (top right), value loss (bottom left), and KL 

divergence (bottom right). Each subplot uses different colors for training and validation data, with confidence 

intervals shown as shaded regions. 

 

3.3 Adaptive Resource Scheduling Strategy 

 

The adaptive scheduling mechanism implements a multi-level decision process based on the trained DRL model. 

Table 8 details the decision thresholds and corresponding actions. 

Table 8: Scheduling Decision Parameters 

Load Level Resource Utilization Queue Length Action Priority 

Low <50% <10 Scale down 

Medium 50-80% 10-30 Maintain 

High >80% >30 Scale up 
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Figure 6: Resource Scheduling Decision Process 

The decision process visualization shows a complex flowchart with multiple decision points. Nodes represent 

system states, connected by arrows indicating transition probabilities. Color coding indicates different action 

categories, with node size proportional to state occurrence frequency. Overlaid heat maps show the distribution of 

selected actions in other states. 

 

3.4 Load Balancing Mechanism 

 

The load balancing mechanism integrates historical performance data with real-time measurements to optimize 

resource distribution. Dynamic adjustment thresholds are computed based on system-wide performance metrics 

and individual MCU states [23]. The load-balancing strategy operates at multiple timescales, from millisecond-

level adjustments to long-term resource planning. 

 

The algorithm continuously monitors key performance indicators, including CPU utilization, memory usage, 

network bandwidth, and processing latency. These metrics are combined into a comprehensive load index using 

weighted aggregation. The weights are dynamically adjusted based on observed performance patterns and system 

constraints [24]. 

 

A distributed consensus mechanism ensures coordination among multiple MCUs in the resource pool. The 

mechanism employs a modified Raft algorithm for leader election and state synchronization, with optimizations 

for low-latency video conferencing workloads [25]. The consensus protocol maintains system stability while 

enabling rapid response to changing load conditions. 

 

4. IMPLEMENTATION AND PERFORMANCE EVALUATION 
 

4.1 Experimental Setup 

 

The experimental environment consists of a distributed cloud platform with multiple MCU nodes. Table 9 details 

the hardware specifications of the test environment. 

Table 9: Hardware Configuration Details 

Component Specification Quantity 

CPU Intel Xeon E5-2680 v4 8 cores/node 

Memory DDR4 128GB Four nodes 

Network 10Gbps Ethernet 16 ports 

Storage NVMe SSD 2TB Four units 

 

The software stack implementation includes custom-developed components integrated with open-source 
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frameworks. Table 10 presents the software configuration details. 

Table 10: Software Environment Configuration 

Component Version Function 

Operating System Ubuntu 20.04 LTS System platform 

Deep Learning Framework PyTorch 1.9.0 Model implementation 

Video Processing FFmpeg 4.2.2 Stream Handling 

Network Protocol WebRTC Real-time communication 

 
Figure 7: Experimental System Architecture Diagram 

The system architecture visualization presents a comprehensive view of the experimental setup. The diagram uses 

a layered approach, showing physical infrastructure at the bottom (hardware), middleware in the center (software 

stack), and application services at the top. Different components are connected through color-coded paths 

indicating data flow directions and protocols. 

 

4.2 Performance Metrics 

 

The evaluation framework incorporates multiple metrics covering system performance, resource utilization, and 

user experience. Table 11 lists the key performance indicators monitored during experiments. 

Table 11: Performance Evaluation Metrics 

Category Metric Unit Target Value 

System Performance Response Time ms <100 

Resource Utilization CPU Usage % <80 

Quality of Service Video Quality PSNR >35 

Network Bandwidth Efficiency % >90 

Table 12: Quality of Experience Metrics 

Parameter Weight Description Measurement Method 

Video Quality 0.4 PSNR/SSIM Objective assessment 

Audio Quality 0.3 MOS score Subjective evaluation 

Latency 0.2 End-to-end delay Network measurement 

Stability 0.1 Jitter/packet loss Statistical analysis 
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Figure 8: Performance Metrics Correlation Analysis 

The correlation analysis visualization demonstrates relationships between different performance metrics. The plot 

features a matrix of scatter plots with regression lines, where each cell shows the correlation between two metrics. 

Color intensity indicates correlation strength, while point size represents data frequency. 

 

4.3 Comparison with Baseline Methods 

 

The proposed DRL-based approach is compared against three baseline methods: traditional rule-based scheduling 

(RBS), static resource allocation (SRA), and dynamic load balancing (DLB). Each method is evaluated under 

varying workload conditions and network scenarios. 

 
Figure 9: Comparative Performance Analysis 

The performance analysis visualization presents a multi-line plot comparing different methods across multiple 

metrics. The x-axis represents time intervals, while multiple y-axes show different performance metrics. Each 

method is represented by a distinct line style and color, with confidence intervals shown as shaded regions. 

 

4.4 Results Analysis 

 

The experimental results demonstrate significant improvements in resource utilization and service quality using 

the proposed DRL-based approach [26]. The average response time improved by 35.2% compared to RBS, while 

resource utilization efficiency increased by 28.7%. The system maintained stable performance under varying load 

conditions, with CPU utilization staying below 75% even during peak loads. 
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Analysis of QoE metrics shows a 42.3% reduction in video quality degradation events compared to baseline 

methods. The adaptive resource scheduling mechanism demonstrated robust performance in handling dynamic 

workload variations, maintaining an average PSNR of 38.2 dB across all test scenarios [27]. 

 

The load balancing effectiveness is particularly notable under high-stress conditions, where the system maintained 

performance levels within 90% of optimal values, compared to 65-75% for baseline methods. Network efficiency 

measurements indicate a 23.5% improvement in bandwidth utilization, with reduced packet loss rates and jitter. 

 

Long-term stability analysis over 30 days shows consistent performance improvements, with 99.99% service 

availability and a mean time between failures (MTBF) of 720 hours. The system successfully handled peak loads 

of up to 1000 concurrent users while maintaining quality of service parameters within specified thresholds. 

 

5. CONCLUSION 
 

5.1 Research Contributions 

 

This research advances state-of-the-art cloud video conferencing systems through several significant contributions. 

The deep reinforcement learning-based resource scheduling framework represents a novel approach to addressing 

the challenges of dynamic resource management in distributed environments. The implementation demonstrates 

substantial improvements in system performance, resource utilization, and user experience quality compared to 

traditional methods [28] [29]. 

 

The development of an adaptive resource scheduling mechanism based on deep reinforcement learning has yielded 

measurable benefits in system efficiency. The architecture successfully integrates multiple MCUs into a unified 

resource pool, enabling flexible resource allocation across different organizational levels [30] [31]. Performance 

evaluations indicate a 35.2% reduction in response time and a 28.7% improvement in resource utilization compared 

to conventional approaches. 

 

The research introduces innovations in the application of deep reinforcement learning to video conferencing 

systems [32]. The designed state space and reward function effectively capture the complex requirements of real-

time video communication. At the same time, the training methodology addresses the challenges of stability and 

convergence in production environments [33] [34]. The developed framework demonstrates robust performance 

across varying network conditions and user loads. 

 

A significant contribution lies in the implementation of the distributed resource pool architecture. The system 

successfully manages heterogeneous MCU resources while maintaining high availability and fault tolerance [35]. 

The load balancing mechanism achieves optimal resource distribution, with performance metrics showing a 23.5% 

improvement in bandwidth utilization and sustained quality of service during peak loads. 

 

The research provides valuable insights into the practical deployment of AI-driven systems in production 

environments. The comprehensive evaluation framework and performance metrics establish benchmarks for future 

research in this domain [36]. The documented implementation details and performance analyses contribute to the 

broader understanding of applying deep learning techniques to real-time communication systems [37]. 

 

5.2 Research Limitations 

 

Despite the significant achievements, several limitations in the current research warrant consideration for future 

investigations. The deep reinforcement learning model's performance heavily depends on the quality and diversity 

of training data [38]. The current implementation may not fully capture all possible network conditions and user 

scenarios encountered in real-world deployments. 

 

The deep learning model's computational overhead presents challenges for real-time decision-making. While the 

system maintains acceptable performance levels, the processing requirements may limit scalability in extremely 

large deployments [39]. Additional optimization techniques may be necessary to reduce the computational burden 

while maintaining decision quality. 

 

The evaluation framework, though comprehensive, primarily focuses on technical performance metrics. A more 

extensive assessment of user experience factors, including subjective quality measures and long-term satisfaction 
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indicators, would provide deeper insights into the system's effectiveness from an end-user perspective [40]. 

 

Network heterogeneity and infrastructure variations across different deployment environments pose challenges to 

system generalization. The current model may require significant adaptation or retraining when deployed in 

environments with substantially different network characteristics or hardware configurations. 

 

The implementation assumes certain minimum requirements for network infrastructure and computing resources. 

Deployments in resource-constrained environments or regions with limited network connectivity may not achieve 

the same level of performance improvements observed in the experimental setup. 

 

While security considerations are addressed in the basic system architecture, they require further investigation for 

enterprise-grade deployments. The current implementation focuses primarily on performance optimization, with 

security features implemented as secondary considerations. 

 

The system's fault tolerance mechanisms, though effective for common failure scenarios, may not adequately 

address all possible failure modes in large-scale deployments. Additional research into robust recovery 

mechanisms and failover strategies would enhance system reliability. 

 

The research primarily focuses on video conferencing applications with relatively predictable usage patterns. The 

system's performance in scenarios with highly irregular usage patterns or sudden dramatic changes in user behavior 

requires further investigation. 

 

The long-term stability and maintenance requirements of the deep learning model in production environments need 

additional study. Regular model updates and adaptation mechanisms may be necessary to maintain optimal 

performance as usage patterns evolve. 

 

The integration capabilities with existing video conferencing infrastructure and legacy systems present practical 

deployment challenges. Additional work is needed to develop comprehensive migration strategies and 

compatibility layers for seamless integration with existing enterprise systems. 
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