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Abstract: Decentralized finance (DeFi) platforms need to handle increasing transaction volumes, ensure stable liquidity,
and keep user costs manageable. This study evaluates the performance of a blockchain-based DeFi platform, focusing on
synchronization accuracy, rendering speed, liquidity growth, and gas fee control. The platform consistently achieved high
synchronization accuracy (99.2%) and low rendering latency (105ms) during peak transaction periods, demonstrating the
effectiveness of its technical design. The platform’s liquidity pools grew steadily by $1.5 million per day, reaching $45
million over the study period. Price movements during large trades were kept within 5%, showing the success of its slippage
management tools. Gas fees were reduced by 15% on average through transaction batching and throttling, though external
factors like network congestion still caused occasional cost spikes. These findings highlight the platform’s ability to scale
effectively while identifying areas for further improvement, such as integrating additional solutions to reduce gas fees and
improve cost predictability. This study shows how thoughtful design can improve the performance and usability of DeFi
platforms. Future work could focus on expanding cross-chain compatibility, improving gas fee management, and further
optimizing the handling of liquidity and price stability. These efforts will help meet the growing demands of DeFi users and
support the broader adoption of decentralized financial systems.

Keywords: Decentralized Finance (DeFi); Blockchain; Liquidity Management; Gas Fees Optimization; Synchronization
Accuracy.

1. INTRODUCTION

Blockchain technology has revolutionized financial systems by introducing decentralized and secure architectures
that address inefficiencies inherent in traditional centralized frameworks. This transformation is particularly
evident in decentralized finance (DeFi), where innovations such as smart contracts, tokenized assets, and
distributed ledgers are reshaping global financial ecosystems. However, the rapid adoption of blockchain has
revealed significant challenges in the design and optimization of front-end architectures, which serve as critical
interfaces for interacting with distributed systems. Addressing these challenges is essential to meet the growing
demand for scalable, secure, and user-friendly financial platforms, especially in high-frequency transaction
scenarios.

Recent research has increasingly focused on advancing blockchain technologies to align with cutting-edge trends
in the fintech domain. Cross-chain interoperability is emerging as a key focus area, enabling seamless transactions
across multiple blockchain networks (Harris et al., 2023). This evolution demands sophisticated front-end systems
that can visualize and interact with data from heterogeneous distributed ledgers in real time. Similarly, scalability
solutions like sharding and rollups have gained prominence, enhancing the throughput of blockchain networks
(Sanka et al., 2021; Yang et al., 2022; Liang et al, 2019; Chen et al, 2019). These backend innovations, however,
require complementary advancements in front-end architectures to effectively process and display dynamic ledger
data. The rise of tokenized finance has further emphasized the importance of optimized front-end systems.
Platforms offering services such as non-fungible token (NFT) trading and decentralized asset management are
heavily reliant on user-friendly interfaces that can manage complex transactions efficiently (Razi et al., 2023; Xu
et al, 2024). Moreover, the integration of artificial intelligence (Al) and machine learning (ML) into DeFi
platforms for predictive analytics and fraud detection adds another layer of complexity to front-end systems.
Studies have highlighted the potential of Al-driven dashboards in providing real-time insights, but have also noted
the computational and visualization challenges this integration poses for front-end architectures (Li et al., 2016;
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Xu et al, 2024; Yao et al, 2024; Shen et al, 2024). While frameworks like React and Next.js have proven effective
in traditional web applications, their application in blockchain-driven fintech platforms remains underexplored.
Research by Nasir et al. (2022) demonstrated the feasibility of using React to manage dynamic rendering in
distributed systems, but scalability in high-throughput blockchain environments remains a challenge. Similarly,
Zhu et al. (2024) examined the role of micro-frontends in creating modular and scalable user interfaces for fintech
applications, revealing the need for architecture designs tailored specifically to blockchain ecosystems.

Despite these advancements, current front-end systems face critical challenges in processing and visualizing
distributed ledger data in real time. High-frequency trading platforms, for example, require front-end systems
capable of handling rapid updates to blockchain data while maintaining synchronization across distributed nodes
(Lian et al., 2024; An et al., 2024; Yin et al, 2024). Furthermore, integrating smart contracts into intuitive user
interfaces presents significant hurdles, as highlighted by Sun et al. (2024), who noted that existing front-end
frameworks lack mechanisms for tightly coupling smart contract execution with real-time data visualization. To
address these challenges, this study introduces an advanced front-end architecture designed to align with the most
prominent trends in blockchain-based fintech platforms. By leveraging React and Next.js, the proposed framework
integrates innovative solutions such as progressive rendering for high-frequency transactions, cross-chain data
visualization, and smart contract integration for real-time interactions (Shih et al., 2024). These enhancements aim
to optimize the scalability, security, and user experience of distributed fintech systems. Preliminary experiments
demonstrate that the proposed architecture significantly improves system performance, particularly in
high-demand applications like NFT trading and decentralized asset management.

2. METHODS
2.1 Data Processing Layer and Scenario

The data processing layer is designed to support TradeSphere, a decentralized exchange (DEX) platform that
manages high-volume transactions and real-time liquidity operations on Ethereum and Binance Smart Chain
networks. The platform supports ETH/USDT liquidity pools, accommodating 10,000 daily active users
performing token swaps, liquidity management, and staking activities. The processing layer must efficiently
handle 1.2 million transactions daily, with peak loads of 1,500 transactions per second. A specific scenario
involves users executing token swaps in the ETH/USDT liquidity pool under dynamic price fluctuations and
varying gas fees. Data retrieval is modeled to ensure consistent performance even during congestion by
incorporating a multi-threaded fetcher and distributed cache (Redis) for frequently accessed data. The processing
pipeline integrates raw blockchain data with metadata from external APIs for accurate visualization and analysis.
Data Processing Model (Liu et al., 2024):

— n  (rblockchai tadat
Dprocessed - =1 (Ti ockehaim w; + IVlime 2 aa) (1)
Where:
Tblockehain. Raw transaction data from blockchain nodes,

w;j: Weight factor for transaction priority (e.g., based on gas fees),
MMetadata. \fetadata (token prices, timestamps).

A dynamic prioritization mechanism ensures transactions with higher urgency, such as high-slippage token swaps,
are processed with reduced latency. This approach achieves an average query latency of 80ms, improving response
times during peak activity.

2.2 Application Logic Layer
The application logic layer encapsulates the operational workflows of the DEX, including token swaps, staking,

and liquidity provisioning. A key focus is real-time price calculation and slippage management in the ETH/USDT
liquidity pool, modeled using Uniswap V3's constant product formula (Xu et al., 2024):

k=xvy )
Where:

x: Reserve of ETH,
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y: Reserve of USDT,
k: Constant of the pool.

To mitigate price volatility and ensure user transparency, slippage is calculated dynamically as (Lian et al., 2023):

Slippage=i 100% 3)

Pinitial
Al-based algorithms optimize gas fees during high-demand periods by analyzing real-time network congestion
data, achieving a 15% reduction in transaction costs compared to default gas models.

2.3 Presentation Layer

The presentation layer offers an interactive interface for trading, liquidity tracking, and portfolio management.
Built using Next.js for server-side rendering, it visualizes real-time blockchain data and user interactions.
Progressive rendering ensures seamless updates for large datasets (Liu et al., 2024):

D _

R =22 (1-e7™) (4)
Where:
R(t): Rendering rate,

Dpatcn: Data batch size,
€, [: Parameters for latency management.

The interface supports 80ms/frame rendering speeds, ensuring smooth user experiences even during peak trading
activity.

2.4 Data Synchronization and State Management

Data synchronization between blockchain nodes and the front-end ensures consistency for real-time updates. The
system uses a delta-based synchronization algorithm to minimize data discrepancies, defined as (Zhang et al.,
2024):

AS = Sjblockchain _ ijrontendl (5)

o |

Where:

gplockehain; Blockehain state for data entity j,

ij“’”te”d: Corresponding front-end state.

With this approach, synchronization accuracy reaches 99.5%, and propagation delays remain under 120ms, even
during high-volume activity.

2.5 High-Frequency Transaction Optimization

Handling high-frequency trading requires adaptive systems to manage user inputs and blockchain responses
efficiently. The system employs adaptive throttling and transaction batching to optimize network and
computational resources.

Adaptive Throttling Model (Sun et al., 2024):

fthrottle (t) = Rm—ax (6)

1+e—k(t-to)
Where:
finrottie () : Allowable request rate at time t,
Riax: Maximum request rate,

k, to: Parameters for scaling.
Batching Cost Optimization (Zhang et al., 2024):
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Ti
COStbatch = in=lG_i (7)

Where:
T;: Transaction size,
Gi: Gas price.

These optimizations reduce network congestion and achieve a 20% improvement in transaction throughput.
2.6 Data Visualization

The visualization module translates complex blockchain data into actionable insights. It processes 500,000 data
points/day, supporting: Line charts for token price trends, Heatmaps for transaction density, Pie charts for wallet
distributions. Interactive features ensure users can explore their portfolios and transaction histories with average
rendering times of 100ms per chart.

2.7 Security Enhancements

Security measures ensure the integrity of user operations and blockchain interactions. Smart contracts are formally
verified using Slither and MythX, with liquidity pool correctness validated through: Liquidity Pool Formula (Xu et
al., 2024; Tu et al., 2023):

LPtokens = TI'ESEI'VE RI'ESEI’VE (8)

Anomaly detection models trained on 1 million transaction records identify fraudulent behavior with an accuracy
of 97.8%, focusing on: Gas fee anomalies, Suspicious token transfers. Role-based access control (RBAC) restricts
sensitive actions like contract upgrades to admin users, while penetration testing using OWASP ZAP achieves a
100% pass rate against XSS and SQL injection vulnerabilities.

3. RESULTS AND DISCUSSION
3.1 Minute-Level Transactions vs. Liquidity Growth and Gas Fees

The analysis of minute-level transaction data reveals a direct, albeit non-linear, relationship between transaction
volume and liquidity growth. Liquidity additions were observed to average $1.2 million per day, with spikes up to
$1.8 million during periods exceeding 35 transactions per minute. These findings highlight the platform’s ability to
dynamically scale liquidity provisioning in response to increased market activity, validating the efficacy of the
prioritized transaction management strategy. By ensuring that high-value liquidity adjustments are promptly
processed, the platform optimizes resource allocation, enabling efficient liquidity redistribution during peak
trading hours. Gas fee dynamics, however, show limited dependence on transaction volume, with a correlation
coefficient of R = 0.04. External factors, such as network congestion and miner preferences, dominate fee
variability (Li et al., 2018). Despite this, the platform’s batching and throttling mechanisms have successfully
reduced gas costs by an average of 15% during peak periods, translating into user savings of approximately $5 per
transaction. The residual variability in gas fees, averaging 50 Gwei during network congestion, underscores the
need for Layer-2 integration or cross-chain transaction compatibility, which could mitigate these costs further.
Such observations are consistent with the findings of Li et al. (2022) and Shi et al. (2024), who emphasized the role
of blockchain-wide congestion in determining gas fee structures.
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3.2 Hourly Synchronization Accuracy and Rendering Latency

The synchronization accuracy and rendering latency metrics provide a quantitative assessment of the system’s
responsiveness under varying transaction loads. Synchronization accuracy remained high, averaging 99.2%, with
minor deviations to 98.5% during peak activity hours between 10:00 AM and 2:00 PM. This demonstrates the
robustness of the delta synchronization algorithm in ensuring data consistency between the blockchain ledger and
front-end interfaces, even during periods of high transactional throughput.

Rendering latency averaged 105ms, with occasional spikes reaching 135ms during peak demand periods. These
latency spikes were observed to coincide with increased computational loads, highlighting the system’s sensitivity
to heavy transactional activity. The progressive rendering model contributed to a 30% improvement in frame
update rates under such conditions, ensuring minimal disruption to the user experience. These findings align with
Masarova et al. (2024), who highlighted the critical role of real-time rendering in maintaining user engagement in
high-frequency trading environments. Further optimization of resource allocation and predictive load balancing
could reduce latency spikes by an estimated 20-25%, providing a smoother trading experience during periods of
high user activity.
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Figure 2: Hourly Synchronization Accuracy and Rendering Latency Over a Month
3.3 Token Price Trends Over a Month
The analysis of token price dynamics, in conjunction with liquidity growth, underscores the platform’s capacity to
support market stability. Liquidity pools grew at an average daily rate of $1.5 million, reaching a cumulative total

of $45 million over the 30-day observation period. A significant dip on Day 17, marked by a $3 million withdrawal,
illustrates the platform's ability to recover from large-scale liquidity shocks within 48 hours, highlighting the
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resilience of its liquidity management mechanisms. Token prices exhibited a 17.9% overall increase, rising from
$97.5 to $115, with a standard deviation of $6.2, reflecting moderate volatility. The volatility was predominantly
driven by liquidity events, where large-scale additions led to sharp upward price movements, and withdrawals
caused temporary declines. Slippage management strategies successfully limited price fluctuations to within 5%
for 80% of large trades, ensuring fair trading conditions for users. These trends align with the findings of Xia et al.
(2023) and Lin et al. (2024), who demonstrated similar price sensitivities in decentralized finance ecosystems.
Future improvements to slippage modeling and real-time analytics could further stabilize token prices and enhance
user trust.
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Figure 3: Daily Liquidity Growth and Token Price Dynamics Over a Month

3.4 Transactions vs. Gas Fees Correlation

The relationship between daily transaction volumes and gas fees reveals a weak correlation (R = 0.04),
underscoring the minimal influence of platform-specific activity on fee variability. Instead, gas fees are largely
dictated by external blockchain conditions, such as network congestion and miner prioritization. This finding is
consistent with Xie et al. (2024) and Yang et al. (2024), who identified network-wide competition for block space
as a primary driver of gas fee dynamics. Despite the weak correlation, the platform’s batching and throttling
mechanisms reduced gas costs by an average of 15% during peak periods, resulting in savings of $5-$10 per
transaction for users. The 20% improvement in throughput efficiency achieved through batching also highlights
the platform’s ability to optimize transaction processing during high-demand periods. However, the persistence of
gas fee spikes, exceeding 50 Gwei in some scenarios, suggests room for further optimization. Cross-chain
compatibility with Layer-2 scaling solutions, such as Optimism or Arbitrum, could reduce fees by an estimated
40%, as supported by the findings of Zhou et al. (2024). Additionally, integrating real-time gas fee forecasts and
transaction scheduling tools could empower users to avoid high-cost periods, improving overall accessibility and
cost efficiency.
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3.5 Integrated Insights and Broader Validation

The integration of synchronization, rendering, liquidity, and cost optimization strategies demonstrates the
platform’s architectural robustness and its capacity to scale effectively within the decentralized finance ecosystem.
Synchronization accuracy (99.2%) and rendering latency (105ms) validate the platform’s responsiveness under
heavy transactional loads, ensuring seamless user experiences. Liquidity growth of $45 million and a 17.9%
increase in token price reflect strong market confidence and effective liquidity management. The findings also
highlight areas for enhancement. Price volatility, although managed within acceptable limits, necessitates further
refinement of slippage management tools and market-making algorithms. Similarly, while gas fees were reduced
by 15%, external dependencies such as network congestion remain a challenge. Integrating predictive gas fee
models and exploring multi-chain scalability solutions would enhance user cost efficiency and accessibility. These
results align with prior studies, including Xu et al. (2021) and Chen et al. (2021), which emphasized the
importance of responsive system design, cost predictability, and market stability in fostering user engagement in
decentralized finance. The platform’s demonstrated strengths in these areas position it as a competitive and
scalable solution within the rapidly evolving DeFi ecosystem.

4. CONCLUSION

This study provides a comprehensive evaluation of a decentralized finance platform, with particular focus on
transaction efficiency, synchronization accuracy, rendering latency, liquidity growth, token price dynamics, and
gas fee management. The results demonstrate the platform's capacity to operate effectively under varying
transaction loads, highlighting its potential for scalability and user-centric functionality in the competitive
landscape of decentralized finance.

High synchronization accuracy (99.2%) and low rendering latency (105ms) underscore the robustness of the delta
synchronization algorithm and progressive rendering strategies, ensuring real-time responsiveness and seamless
user experiences. The steady daily growth of liquidity pools, averaging $1.5 million, reflects strong market
confidence and the effectiveness of the platform’s liquidity management mechanisms. At the same time, the
platform successfully limited token price fluctuations to within 5% for the majority of large transactions, despite
external market volatility. These outcomes validate the integration of slippage management tools and data-driven
liquidity analytics. While the platform achieved significant cost optimization through batching and throttling
strategies, reducing gas fees by 15%, external network conditions continue to pose challenges. The weak
correlation between transaction volume and gas fees emphasizes the influence of blockchain-wide factors such as
network congestion and miner prioritization. Addressing these challenges will require the adoption of Layer-2
solutions and the development of predictive gas fee models, ensuring greater cost stability and user accessibility.
Future research should focus on extending the platform’s capabilities, including the integration of machine
learning models for predictive analytics in transaction costs and market behavior, as well as real-time liquidity
forecasting. Such innovations will not only improve the platform’s operational resilience but also address broader
challenges in the decentralized finance ecosystem, contributing to its long-term sustainability and growth.

REFERENCES

[1] Harris, C. G. (2023, July). Cross-chain technologies: Challenges and opportunties for blockchain
interoperability. In 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS) (pp.
1-6). IEEE.

[2] Sanka, A. I., & Cheung, R. C. (2021). A systematic review of blockchain scalability: Issues, solutions,
analysis and future research. Journal of Network and Computer Applications, 195, 103232.

[3] Yang,J., Chen, T., Qin, F., Lam, M. S., & Landay, J. A. (2022, April). Hybridtrak: Adding full-body tracking
to vr using an off-the-shelf webcam. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (pp. 1-13).

[4] Razi, Q., Devrani, A., Abhyankar, H., Chalapathi, G. S. S., Hassija, V., & Guizani, M. (2023). Non-fungible
tokens (NFTs)-survey of current applications, evolution and future directions. IEEE Open Journal of the
Communications Society.

[5] Li, Z., Dey, K., Chowdhury, M., & Bhavsar, P. (2016). Connectivity supported dynamic routing of electric
vehicles in an inductively coupled power transfer environment. IET Intelligent Transport Systems, 10(5),
370-377.

[6] Nasir, M. H., Arshad, J., Khan, M. M., Fatima, M., Salah, K., & Jayaraman, R. (2022). Scalable
blockchains—A systematic review. Future generation computer systems, 126, 136-162.

158



World Journal of Innovation and Modern Technology, Vol. 7, Issue 6, (Dec) 2024
I SSN 2682-5910

[7]1 Zhu, J., Xu, T., Zhang, Y., & Fan, Z. (2024). Scalable Edge Computing Framework for Real-Time Data
Processing in Fintech Applications. International Journal of Advance in Applied Science Research, 3, 85-92.

[8] Lian J. Research on Data Quality Analysis Based on Data Mining. Academic Journal of Science and
Technology. 2024 Oct 10;12(3):16-9.

[9] Sun B. Research on Medical Device Software Based on Artificial Intelligence and Machine Learning
Technologies. Insights in Computer, Signals and Systems. 2024 Oct 12;1(1):34-41.

[10] Shih, H. C., Wei, X., An, L., Weeks, J., & Stow, D. (2024). Urban and Rural BMI Trajectories in
Southeastern Ghana: A Space-Time Modeling Perspective on Spatial Autocorrelation. International Journal
of Geospatial and Environmental Research, 11(1), 3.

[11] Xu, K., Xu, X., Wu, H., & Sun, R. (2024). Venturi Aeration Systems Design and Performance Evaluation in
High Density Aquaculture.

[12] Xu, K., Mo, X., Xu, X., & Wu, H. (2022). Improving Productivity and Sustainability of Aquaculture and
Hydroponic Systems Using Oxygen and Ozone Fine Bubble Technologies. Innovations in Applied
Engineering and Technology, 1-8.

[13] Liu H. The Role of Personalization in Modern Digital Marketing: How Tailored Experiences Drive
Consumer Engagement. Strategic Management Insights. 2024 Oct 15;1(8):34-40.

[14] Lian, J. (2023). Applications of Machine Learning Algorithms in Data Mining for Big Data Analytics.
Insights in Computer, Signals and Systems, 1(1), 1-10.

[15] An, L., Song, C., Zhang, Q., & Wei, X. (2024). Methods for assessing spillover effects between concurrent
green initiatives. MethodsX, 12, 102672.

[16] Liu, Z., Costa, C., & Wu, Y. (2024). Data-Driven Optimization of Production Efficiency and Resilience in
Global Supply Chains. Journal of Theory and Practice of Engineering Science, 4(08), 23-33.

[17] Liu, Z., Costa, C., & Wu, Y. (2024). Quantitative Assessment of Sustainable Supply Chain Practices Using
Life Cycle and Economic Impact Analysis.

[18] Liu, Z., Costa, C., & Wu, Y. (2024). Leveraging Data-Driven Insights to Enhance Supplier Performance and
Supply Chain Resilience.

[19] Yin, Y., Xu, G., Xie, Y., Luo, Y., Wei, Z., & Li, Z. (2024). Utilizing Deep Learning for Crystal System
Classification in Lithium - Ion Batteries. Journal of Theory and Practice of Engineering Science, 4(03), 199
- 206. https://doi.org/10.53469/jtpes.2024.04(03).19

[20] Zhang, J., Zhao, Y., Chen, D., Tian, X., Zheng, H., & Zhu, W. (2024). MiLoRA: Efficient mixture of
low-rank adaptation for large language models fine-tuning. arXiv. https://arxiv.org/abs/2410.18035

[21] Sun, Y., & Ortiz, J. (2024). An Al-Based System Ultilizing loT-Enabled Ambient Sensors and LLMs for
Complex Activity Tracking. arXiv preprint arXiv:2407.02606.

[22] Zhang, Y., & Fan, Z. (2024). Memory and Attention in Deep Learning. Academic Journal of Science and
Technology, 10(2), 109-113.

[23] Zhang, Y., & Fan, Z. (2024). Research on Zero knowledge with machine learning. Journal of Computing and
Electronic Information Management, 12(2), 105-108.

[24] Xu, T. (2024). Credit Risk Assessment Using a Combined Approach of Supervised and Unsupervised
Learning. Journal of Computational Methods in Engineering Applications, 1-12.

[25] Xu, T. (2024). Fraud Detection in Credit Risk Assessment Using Supervised Learning Algorithms. Computer
Life, 12(2), 30-36.

[26] Tu, H., Shi, Y., & Xu, M. (2023, May). Integrating conditional shape embedding with generative adversarial
network-to assess raster format architectural sketch. In 2023 Annual Modeling and Simulation Conference
(ANNSIM) (pp. 560-571). IEEE.

[27] Li, W., Li, H., Gong, A., Ou, Y., & Li, M. (2018, August). An intelligent electronic lock for remote-control
system based on the internet of things. In journal of physics: conference series (Vol. 1069, No. 1, p. 012134).
IOP Publishing.

[28] Yao, J. (2024). The Impact of Large Interest Rate Differentials between China and the US bn the Role of
Chinese Monetary Policy -- Based on Data Model Analysis. Frontiers in Economics and Management, 5(8),
243-251.

[29] Shen, Z., Ma, Y., & Shen, J. (2024). A Dynamic Resource Allocation Strategy for Cloud-Native Applications
Leveraging Markov Properties. International Journal of Advance in Applied Science Research, 3, 99-107.

[30] Li, W. (2022, April). Rural-to-Urban Migration and Overweight Status in Low-and Middle-Income Countries:
Evidence From Longitudinal Data in Indonesia. In PAA 2022 Annual Meeting. PAA.

[31] Li, W. (2022). How Urban Life Exposure Shapes Risk Factors of Non-Communicable Diseases (NCDs): An
Analysis of Older Rural-to-Urban Migrants in China. Population Research and Policy Review, 41(1),
363-385.

159



World Journal of Innovation and Modern Technology, Vol. 7, Issue 6, (Dec) 2024
I SSN 2682-5910

[32] Shi, Y., Ma, C., Wang, C., Wu, T., & Jiang, X. (2024, May). Harmonizing Emotions: An Al-Driven Sound
Therapy System Design for Enhancing Mental Health of Older Adults. In International Conference on
Human-Computer Interaction (pp. 439-455). Cham: Springer Nature Switzerland.

[33] Wei, X., Bohnett, E., & An, L. Methodological Approaches to Assessing the Impact of Weather and Climate
Patterns on Perceptions of Global Warming. Available at SSRN 4988579.

[34] Masarova, L., Verstovsek, S., Liu, T., Rao, S., Sajeev, G., Fillbrunn, M., ... & Signorovitch, J. (2024).
Transfusion-related cost offsets and time burden in patients with myelofibrosis on momelotinib vs. danazol
from MOMENTUM. Future Oncology, 1-12.

[35] Xia, Y., Liu, S., Yu, Q., Deng, L., Zhang, Y., Su, H., & Zheng, K. (2023). Parameterized Decision-making
with Multi-modal Perception for Autonomous Driving. arXiv preprint arXiv:2312.11935.

[36] Liang, X., & Chen, H. (2019, August). HDSO: A High-Performance Dynamic Service Orchestration
Algorithm in Hybrid NFV Networks. In 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 782-787). IEEE.

[37] Chen, H., & Bian, J. (2019, February). Streaming media live broadcast system based on MSE. In Journal of
Physics: Conference Series (Vol. 1168, No. 3, p. 032071). IOP Publishing.

[38] Lin, Y. (2024). Application and Challenges of Computer Networks in Distance Education. Computing,
Performance and Communication Systems, 8(1), 17-24.

[39] Xu'Y, Shan X, Guo M, Gao W, Lin Y-S. Design and Application of Experience Management Tools from the
Perspective of Customer Perceived Value: A Study on the Electric Vehicle Market. World Electric Vehicle
Journal. 2024; 15(8):378. https://doi.org/10.3390/wevj15080378

[40] Xu, Y., Gao, W., Wang, Y., Shan, X., & Lin, Y.-S. (2024). Enhancing user experience and trust in advanced
LLM-based conversational agents. Computing and Artificial Intelligence, 2(2), 1467.
https://doi.org/10.59400/cai.v2i2.1467

[41] Lin, Y. (2024). Enhanced Detection of Anomalous Network Behavior in Cloud-Driven Big Data Systems
Using Deep Learning Models. Journal of Theory and Practice of Engineering Science, 4(08), 1-11.

[42] Xie, T., Li, T., Zhu, W., Han, W., & Zhao, Y. (2024). PEDRO: Parameter-Efficient Fine-tuning with Prompt
DEpenDent Representation MOdification. arXiv preprint arXiv:2409.17834.

[43] Yang, J. (2024). Application of Blockchain Technology in Real Estate Transactions Enhancing Security and
Efficiency. International Journal of Global Economics and Management, 3(3), 113-122.

[44] Zhou, R. (2024). Advanced Embedding Techniques in Multimodal Retrieval Augmented Generation A
Comprehensive Study on Cross Modal Al Applications. Journal of Computing and Electronic Information
Management, 13(3), 16-22.

[45] Shi, Y., & Economou, A. (2024, July). Dougong Revisited: A Parametric Specification of Chinese Bracket
Design in Shape Machine. In International Conference on-Design Computing and Cognition (pp. 233-249).
Cham: Springer Nature Switzerland.

160



