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Abstract: The rapid growth in electric vehicle (EV) adoption and the increasing use of renewable energy have introduced
challenges in designing and managing EV charging infrastructure. This study presents a framework that combines a hybrid
deep learning model, spatial and temporal demand analysis, and vehicle-to-grid (V2G) optimization to address these issues.
The framework achieved high predictive accuracy, with an RMSE of 2.1 kWh and an R2R"2R2 value of 0.92, effectively
capturing daily demand patterns and variations across charging stations. Spatial analysis revealed differences in usage
between urban and suburban stations, highlighting the need for targeted planning strategies to address high-demand areas
and underused locations. V2G optimization reduced the Peak-to-Average Ratio by 28% and increased renewable energy
usage to 68% under normal conditions, contributing to grid stability and energy efficiency. The framework was tested under
scenarios of increasing EV adoption and station numbers, maintaining reliable performance and operational effectiveness.
These results provide practical guidance for improving EV charging systems and ensuring reliable energy distribution
while promoting sustainability. By addressing key operational challenges, this research provides a strong foundation for
incorporating advanced tools into urban energy systems. Future studies could explore the use of real-time traffic data and
localized events to further improve prediction accuracy and enhance system performance in complex urban settings.
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1. INTRODUCTION

The rapid growth of electric vehicles (EVs) is fundamentally reshaping global transportation and energy systems.
As EV adoption accelerates, traditional charging infrastructure is increasingly strained, particularly in urban
centers where demand surges have outpaced grid capabilities. This situation is further complicated by the need to
integrate renewable energy sources and manage fluctuating power demands, highlighting the importance of
scalable and adaptive charging solutions. Accurate forecasting of EV charging demand has been a cornerstone of
recent research efforts. Tappeta et al. (2022) developed a spatiotemporal deep learning model that provided
substantial improvements in predicting charging loads, offering actionable insights for the strategic placement of
charging stations. Similarly, Ali et al. (2021) and Yang et al. (2024) employed machine learning techniques to
model user behavior, enabling optimized resource allocation and enhanced operational efficiency. Integrating EV
charging systems with smart grids has also emerged as a critical area of investigation. Vehicle-to-grid (V2G)
technology, which facilitates bidirectional energy flow between EVs and the grid, has shown promise in balancing
peak loads and supporting grid stability. Kumar et al. (2024) and Zhu et al. (2024) applied reinforcement learning
algorithms to V2G interactions, achieving significant reductions in peak demand and improving grid resilience. In
parallel, Gu et al. (2020) explored blockchain-enabled decentralized energy management systems, demonstrating
their potential to enhance transaction efficiency and energy distribution within V2G frameworks.

Renewable energy integration represents another pressing challenge in EV infrastructure development. Luo et al.
(2020) proposed a hybrid microgrid model powered by solar and wind energy, achieving a 40% reduction in
carbon emissions through Al-driven optimization. Lian et al. (2024) expanded this work by incorporating energy
storage systems, ensuring stable energy supply during periods of intermittent renewable generation and peak
demand.

In addition to demand forecasting and energy integration, recent advancements in distributed computing and
decision-making have shown significant potential for improving charging infrastructure. Li et al. (2015)
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introduced a multi-agent system that enables real-time coordination of charging stations, reducing delays and
improving system efficiency. Edge computing, as demonstrated by Yao et al. (2024), further enhances operational
efficiency by processing data locally at charging sites, minimizing latency and reducing the computational burden
on centralized systems (Xie et al., 2024).

While these studies have made significant strides, several key gaps remain. Existing frameworks often lack the
adaptability required to scale with increasing EV adoption and fail to fully integrate predictive analytics with
renewable energy and smart grid technologies. This study aims to address these limitations by proposing an
Al-driven framework that combines predictive demand modeling, V2G optimization, and renewable energy
integration. By embedding these components into a unified smart grid system, the framework seeks to enhance
operational efficiency, reduce environmental impact, and provide practical solutions to the challenges of modern
EV infrastructure.

2. MATERIALS AND METHODS

2.1 Data Collection and Preprocessing

To develop and validate the proposed framework, we utilized a comprehensive dataset collected over three years
from a metropolitan region. This dataset included more than 4.5 million charging sessions across 100 public
charging stations, with detailed records of session timestamps, energy consumption (kWh), idle durations, and
utilization rates. Grid load and renewable energy data, recorded every 15 minutes, provided insights into solar and
wind power variability alongside real-time grid demands. Real-time traffic flows at 200 intersections,
demographic information across 500 urban grids, and hourly weather data (e.g., temperature, humidity, solar
irradiance, wind speed) enriched the spatial and contextual dimensions. Additionally, dynamic electricity pricing
schedules and EV subsidy policies were incorporated to reflect real-world economic factors.

Data preprocessing was a critical step to ensure consistency and quality. Missing values in time-series data were
addressed using cubic spline interpolation, while categorical features were imputed using K-Nearest Neighbors
(KNN). Outliers were identified and treated based on the Interquartile Range (IQR). Temporal features, including
trends and seasonal patterns, were extracted through time-series decomposition (Sun et al., 2024):

= + +

where T;is the trend, S; is the seasonal component, and e; represents the residual. Spatial relationships, such as
distances between stations and traffic hubs, were encoded using adjacency matrices. To standardize data inputs,
continuous variables were normalized using min-max scaling (Xu et al., 2024):

~  min
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The final processed dataset contained over 20 million structured records, partitioned into training (70%),
validation (20%), and testing (10%) subsets for subsequent modeling.

2.2 Demand Prediction Model

The demand prediction model was designed as a hybrid deep learning architecture, integrating temporal, spatial,
and contextual features to predict hourly EV charging demand. Long Short-Term Memory (LSTM) networks
captured temporal dependencies in charging behavior, identifying trends and recurrent patterns. Graph
Convolutional Networks (GCN) processed spatial data, such as traffic flow and station adjacency, utilizing
adjacency matrices to model interactions between nodes. Contextual inputs, including weather conditions, public
holidays, and dynamic electricity pricing, were integrated through fully connected layers. The model’s predictive
function can be expressed as (Liu et al., 2024; Xia et al., 2023):

= m( )+ eenC v )+ ()

where T; represents temporal features, S; spatial features, 4 the adjacency matrix, and Ct contextual factors.
Model training optimized a regularized loss function (Zhang et al., 2024):
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Performance metrics included Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R?, ensuring a
comprehensive evaluation of the model's accuracy and reliability.

2.3 V2G Optimization Model
To enhance the efficiency of vehicle-to-grid (V2G) interactions, we developed a reinforcement learning (RL)
model framed as a Markov Decision Process (MDP). The state space (St) represented key system variables,

including grid load (Lt), EV battery levels (Bt), renewable energy availability (Rt), and electricity pricing (Pt)
(Masarova et al., 2024):

The action space (At) consisted of decisions to charge, discharge, or remain idle, while the reward function (R)
aimed to optimize grid stability, minimize costs, and maximize renewable energy utilization (Li et al., 2022):

=—( + + )

where G: denotes grid stress, C; operational costs, and ¥; wasted renewable energy. The Q-learning algorithm was
employed to iteratively improve the agent’s policy, with the action-value function updated as (Zhang et al., 2024):

Cooe Coor |+ max ()= )

This approach allowed the RL model to dynamically adapt to real-time conditions, ensuring optimal energy flow
between EVs and the grid.

2.4 Renewable Energy Integration
Integrating renewable energy into the charging infrastructure was achieved through forecasting and optimization

techniques. Renewable energy generation was predicted using Gaussian Process Regression (GPR) (Lin et al.,
2024):

renewable() ( ()| ( ! ))

where m(t) is the mean function, and k(t,t") the covariance function. To efficiently manage battery storage and
discharge, we formulated a linear programming problem to minimize operational costs:

min
subject to constraints:

max:

2.5 System Simulation and Evaluation

The system was implemented using Python, leveraging TensorFlow for deep learning, PyTorch Geometric for
GCN, and OpenAl Gym for RL training. Simulations were conducted across diverse scenarios, including EV
penetration rates of 20%, 40%, 60%, and 80%, seasonal variations in grid load and renewable energy supply, and
emergency conditions such as sudden demand surges or renewable shortfalls.
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Performance metrics were used to evaluate the system comprehensively. Prediction accuracy was assessed using
(Liu et al., 2024):

— )2
g aC =)
- 2
- C =)
Grid load balancing was measured with the Peak-to-Average Ratio (PAR):
max
PAR = 4
mean( )
Renewable energy utilization was calculated as:
Ener
REutiIization = M x 100
Energytotal

Key results demonstrated a 35% reduction in peak grid loads, a 25% improvement in renewable energy utilization,
and a 20% increase in prediction accuracy. The system also proved scalable and resilient, handling a 50% surge in
demand within 15 minutes and maintaining 55% renewable utilization during energy shortfalls.

3. RESULTS AND DISCUSSION

This section provides a comprehensive analysis of the results obtained from the proposed framework, emphasizing
demand prediction accuracy, spatial and temporal demand variations, and statistical performance evaluation. The
results are contextualized with insights from existing literature to highlight their broader implications.

3.1 Demand Prediction Performance

The proposed hybrid deep learning model achieved high accuracy in predicting hourly EV charging demand, with
an RMSE of 2.1 kWh and an R? value of 0.92 across all stations (Figure 1). The model effectively captured
temporal variations, including commuter-driven peaks during morning (7:00-9:00) and evening (17:00-19:00)
hours, demonstrating its robustness for real-time grid management. The optimization of the loss function
significantly reduced prediction errors, while the spatial dependencies encoded by adjacency matrices ensured
reliable forecasts across diverse station types. These results are consistent with Li et al. (2016), who reported that
integrating temporal and spatial features improved demand forecasting in urban energy systems. Such predictive
capabilities are essential for preemptively managing energy allocation and reducing station congestion during peak
hours.
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Figure 1: Hourly Observed EV Charging Demand Over Seven Days
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3.2 Spatial and Temporal Demand Variations

The heatmap in Figure 2 reveals significant spatial and temporal demand variations across 100 stations, with
central business districts (CBDs) showing high utilization during working hours and suburban areas peaking on
weekends. This variation highlights the need for localized infrastructure strategies, such as increasing station
density in high-demand urban areas while introducing flexible pricing or incentives in suburban regions to
encourage balanced usage. The framework’s ability to process spatial dependencies allowed it to identify
underutilized stations, which could be optimized through targeted interventions. These findings are aligned with
Yang et al. (2024), who emphasized the influence of urban land use on charging behaviors. Adaptive infrastructure
planning based on such insights can enhance overall station efficiency and reduce operational costs.
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Figure 2: Spatial and Temporal Distribution of Hourly Charging Demand Across 100 Stations

3.3 Statistical Model Performance

Statistical evaluation, as shown in Figure 3, demonstrated the model’s reliability, with P-values below the
significance threshold of 0.05 for all stations. The R? values, ranging from 0.85 to 0.95, indicated strong predictive
performance, even in areas with irregular demand. For example, tourist hotspots with higher variability exhibited
slightly lower R? values, suggesting the need for additional contextual data to improve accuracy. The reward
function used in the V2G optimization framework successfully balanced grid load reduction, operational cost
minimization, and renewable energy utilization. The optimization results revealed a 28% reduction in the
Peak-to-Average Ratio (PAR) and a 35% decrease in operational costs during peak periods, underscoring the
model’s capability to stabilize grid operations. Similar outcomes were reported by Yang et al. (2024) and Sun et al.
(2024), highlighting the potential of V2G systems to enhance grid resilience and efficiency.
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Figure 3: Model Performance Metrics for EV Charging Demand Prediction
3.4 Broader Implications for Grid Management

The integration of renewable energy into the framework proved highly effective, achieving 68% utilization under
normal conditions and maintaining 55% utilization during renewable shortfalls. This was achieved through
optimized energy storage and discharge mechanisms, which reduced reliance on fossil fuels. Additionally,
scalability testing demonstrated the framework’s robustness, with response times remaining under 2.5 seconds as
the number of stations doubled. These findings underscore the framework’s potential for large-scale applications,
aligning with Liu et al. (2024) and Lian et al. (2023), who emphasized the importance of scalable solutions for
urban EV ecosystems. Furthermore, the spatial adaptability offered by the adjacency matrix highlights the
framework’s capability to dynamically manage demand across diverse urban environments.

3.5 Future Directions

While the framework demonstrated strong performance, opportunities exist to refine its predictive accuracy further.
Incorporating additional contextual features, such as real-time traffic patterns, event schedules, and localized
weather data, could enhance accuracy in regions with irregular demand. Advanced multi-objective optimization
strategies could also be explored to simultaneously address environmental, economic, and operational objectives.

4. CONCLUSION

This study presents a robust framework for optimizing EV charging infrastructure, addressing the challenges
posed by the rapid growth in electric vehicle adoption and increasing reliance on renewable energy. By integrating
a hybrid deep learning model for demand prediction, spatial and temporal analysis, and vehicle-to-grid (V2G)
optimization, the framework delivers actionable solutions for improving demand forecasting, grid stability, and
renewable energy utilization. The model achieved a high predictive accuracy, with an RMSE of 2.1 kWh and an R?
value of 0.92, successfully identifying key temporal and spatial demand patterns. The framework also
demonstrated a 28% reduction in the Peak-to-Average Ratio and a renewable energy utilization rate of 68% under
normal conditions, highlighting its capacity to stabilize grid operations while advancing sustainability objectives.
This research underscores the importance of adaptive planning and scalable solutions for the evolving landscape of
EV charging systems. Spatial analysis revealed distinct utilization patterns between urban and suburban stations,
emphasizing the need for localized strategies such as station densification in high-demand areas and optimization
of underutilized suburban locations. The framework's scalability was validated by its ability to maintain robust
performance under increasing station counts and EV adoption rates. These findings provide a solid foundation for
integrating advanced technologies into urban energy systems. Future research should focus on incorporating
real-time contextual variables, such as dynamic traffic data and localized events, to enhance model performance in
irregular demand scenarios.
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