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Abstract: With the continuous development of global supply chain finance, leveraging advanced artificial intelligence 

technologies to enhance the intelligence of decision support systems has become a key focus in both academia and industry. 
This paper aims to construct a supply chain finance decision support system based on deep reinforcement learning and the 

particle swarm optimization (PSO) algorithm. By effectively capturing the dynamic characteristics of supply chain finance 

data, optimizing model parameters, and improving decision-making accuracy and response speed, this study further 
evaluates the system's impact on enhancing corporate financial benefits. Starting with the theoretical foundation of supply 

chain finance and decision support systems, this paper analyzes the prevalent challenges in the field, such as inaccurate 

decision-making, slow response times, and insufficient model robustness. Next, it provides a detailed discussion on the 
application of artificial intelligence in financial decision-making, outlining the fundamental principles and core algorithms 

of deep reinforcement learning (e.g., DQN, DDPG) and the advantages and implementation mechanisms of PSO in 

parameter optimization. The paper also systematically reviews the integrated application of these two approaches. The 

proposed system architecture consists of four main components: data collection and preprocessing, decision-making 
modules, model optimization, and a feedback mechanism. The decision-making module utilizes deep reinforcement learning 

to construct a dynamic decision model based on state-action-reward principles, enabling real-time learning of key supply 

chain nodes and precise identification of risks and opportunities in complex financial environments. PSO is embedded in 
the model optimization process to perform global search and adaptive tuning of deep reinforcement learning 

hyperparameters, ensuring optimal model performance across various data scenarios. To validate the effectiveness of the 

proposed approach, experiments were conducted using real-world and simulated supply chain finance data. Key evaluation 
metrics included decision accuracy, response time, risk prediction accuracy, and corporate financial performance indicators 

(such as cost reduction rate, profit growth rate, and liquidity improvement). The results were compared with those of 

traditional decision support methods. Experimental results demonstrate that the proposed decision support system, 

integrating deep reinforcement learning and PSO, exhibits significant advantages in capturing dynamic supply chain 
finance data, optimizing decision-making strategies, and mitigating risks. The system effectively enhances corporate 

financial performance and operational efficiency. Additionally, through deployment and feedback analysis in real-world 

applications, this study explores areas for improvement in data quality, real-time response, and model generalization 
capabilities. Future research directions, such as multi-algorithm collaboration and cross-domain data integration, are also 

proposed. In summary, this study validates the effective application of deep reinforcement learning and PSO in supply chain 

finance decision support systems through system construction and empirical analysis. The research highlights the potential 
impact of intelligent decision-making on corporate financial performance and provides valuable insights and guidance for 

future exploration in this field.  

 

1. INTRODUCTION 
 

1.1 Research Background and Significance 

 

⚫ The critical role of supply chain finance in modern enterprises. 

 

⚫ The advantages of artificial intelligence technologies, particularly deep reinforcement learning, in complex 

data modeling and decision-making. 
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⚫ The efficiency of the particle swarm optimization (PSO) algorithm in parameter tuning. 

 

⚫ The practical significance of system construction in improving financial benefits and reducing risks. 

 

1.2 Research Status and Existing Problems 

 

⚫ Limitations of existing supply chain finance decision support systems (e.g., decision accuracy, real -time 

performance, model robustness). 

 

⚫ Constraints in the application of deep reinforcement learning and PSO in this domain. 

 

1.3 Research Objectives and Innovations 

 

⚫ Utilizing deep reinforcement learning to capture the dynamic nature of supply chain finance data. 

 

⚫ Introducing particle swarm optimization for model parameter tuning. 

 

⚫ Developing an integrated intelligent decision support system and evaluating its impact on financial benefits 

through empirical analysis. 

 

2. THEORETICAL FOUNDATION AND LITERATURE REVIEW 
 

2.1 Supply Chain Finance and Decision Support Systems Overview 

 

2.1.1 Basic Concepts and Key Indicators of Supply Chain Finance 

 

Supply Chain Finance (SCF) refers to a model that provides financial services and financing support to upstream 

and downstream enterprises in the supply chain by leveraging the credit of core enterprises. Its core concept lies 

in using the credit of the core enterprise to reduce the financing costs and credit risks for small and medium-sized 

enterprises in the supply chain [1]. Key indicators typically include accounts receivable turnover, inventory 

turnover, capital occupation rate, financing costs, default risk rate, and the overall cash flow status of the supply 

chain [2]. Additionally, in practical applications, supply chain finance also focuses on transaction transparency, 

payment cycles, and the synergy between enterprises, all of which are important indicators of the operational 

efficiency of supply chain finance. 

 

2.1.2 Composition and Application Scenarios of Decision Support Systems 

 

A Decision Support System (DSS) is a computer-based information system designed to assist managers and 

decision-makers in making efficient and accurate decisions through the integration of data, models, and expertise. 

Its basic components include the data layer (data collection, storage, and preprocessing), model layer (decision 

models, optimization algorithms, forecasting models, etc.), and user interface layer. Application scenarios cover 

supply chain management, corporate financial planning, risk management, logistics optimization, and more. In the 

context of supply chain finance, decision support systems can be used to monitor cash flows in real-time, predict 

risks, optimize inventory, and financing decisions, thereby improving overall operational efficiency and corporate 

financial performance [3]. 

 

2.2 Deep Reinforcement Learning Theory 

 

2.2.1 Basic Concepts of Reinforcement Learning 

 

Reinforcement Learning (RL) is a machine learning paradigm that focuses on how an agent learns an optimal 

policy through trial and error by interacting with an environment [4]. Key concepts include: 

 

⚫ State: The specific condition of the environment at a given time. 

 

⚫ Action: The behavior that the agent can take in a particular state. 

 

⚫ Reward: The feedback signal from the environment after the agent takes an action, used to measure the quality 
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of the behavior. 

 

⚫ Policy: A rule or mapping function that determines the agent’s actions based on the current state. 

 

The goal of reinforcement learning is to find an optimal policy that maximizes the cumulative reward the agent 

receives. 

 

2.2.2 The Integration of Deep Learning in Reinforcement Learning 

 

The integration of deep learning with reinforcement learning forms Deep Reinforcement Learning (DRL), which 

uses deep neural networks to perform feature extraction and function approximation for large-scale, complex state 

spaces, addressing high-dimensional data problems [5]. Common models include: 

 

⚫ Deep Q-Network (DQN): Approximates the action-value function using a neural network to search for the 

optimal policy in discrete action spaces. 

 

⚫ Deep Deterministic Policy Gradient (DDPG): An algorithm for continuous action spaces that optimizes 

the policy using an actor-critic structure. 

 

These models have achieved significant success in fields such as gaming, robotic control, and financial trading, 

and are beginning to show potential in supply chain management and financial decision-making. [6] 

 

2.2.3 Application Cases in Finance and Supply Chain 

 

In recent years, DRL has been applied in financial market prediction, asset allocation, risk management, and supply 
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chain demand forecasting and inventory control. For example, some studies have used the DQN model to model 

demand changes in the supply chain and achieve dynamic inventory optimization; others have used the DDPG 

model to implement real-time adjustments in asset portfolios to respond to market fluctuations. Overall, the 

introduction of DRL brings stronger dynamic adaptability and nonlinear modeling capabilities to traditional 

financial and supply chain decision problems [7]. 

 

2.3 Particle Swarm Optimization (PSO) Theory 

 

2.3.1 Basic Principles, Algorithm Process, and Parameter Settings of PSO 

 

Particle Swarm Optimization (PSO) is a swarm intelligence optimization algorithm that simulates the foraging 

behavior of bird flocks. The basic principle is that each "particle" represents a potential solution, randomly 

initialized in the search space, and continuously updates its position and velocity to converge near the global 

optimal solution. The typical algorithm process includes: 

 

1) Initialization: Randomly generate the particle swarm with initial velocity and position. 

 

2) Fitness Evaluation: Calculate the fitness function value of each particle. 

 

3) Update Individual and Global Bests: Record the historical best position of each particle and the best position 

of the entire swarm. 

 

4) Update Velocity and Position: Update the velocity and position of each particle using formulas that involve 

inertia weight, individual cognitive factors, and social cognitive factors. 

 

5) Termination Condition: Stop if the termination conditions (e.g., iteration count or fitness threshold) are met, 

or return to step 2. 

 

Key parameters include particle number, inertia weight, individual and social learning factors, which directly affect 

the algorithm’s convergence speed and search effectiveness. 

 

2.3.2 Advantages and Limitations of PSO in Optimization Problems 

 

PSO has the advantages of simplicity, ease of implementation, fewer parameters, and strong global search 

capability, making it particularly suitable for solving high-dimensional, nonlinear problems. However, PSO also 

has limitations such as premature convergence, sensitivity to local optima, and limited search accuracy in some 

complex problems [8]. To address these limitations, various improvements have been proposed, such as 

dynamically adjusting inertia weights and multi-swarm collaborative search. 

 

2.4 Integration of Deep Reinforcement Learning and PSO 

 

2.4.1 Related Work and Achievements in Domestic and International Studies 

 

In recent years, scholars have begun exploring the combination of PSO and DRL to fully leverage the advantages 
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of both methods. For example, some studies have used PSO to optimize the hyperparameters of DRL models, 

improving training stability and convergence speed; others have embedded PSO into the DRL decision-making 

process to dynamically adjust policy network parameters, adapting to the changing supply chain environment [9]. 

Overall, these integration methods have achieved certain successes in fields such as financial trading and logistics 

scheduling, but their application in supply chain finance decision support systems is still in the exploratory stage, 

with limited literature and preliminary validation. 

 

2.4.2 Complementary Advantages of Both Algorithms in Model Tuning and Dynamic Decision-Making 

 

Deep reinforcement learning excels in handling decision problems in high-dimensional, nonlinear, and dynamic 

environments, but its training process is sensitive to hyperparameters and can easily get stuck in local optima. PSO, 

as a global optimization algorithm, can effectively search the parameter space and help the model escape local 

optima. Therefore, combining PSO with DRL allows PSO to utilize its global search capability to automatically 

adjust the key parameters of the DRL model, improving training efficiency and model stability [10]. On the other 

hand, the dynamic decision-making mechanism of DRL enables the system to better adapt to the time-varying and 

complex nature of supply chain finance data. This integration not only enhances the system's real -time response 

capability but also provides more accurate and efficient support for supply chain finance decision-making, forming 

a new intelligent decision framework with complementary advantages and collaborative optimization [11]. 

 

3. SYSTEM MODEL AND ALGORITHM DESIGN 
 

3.1 Overall Architecture of the Supply Chain Finance Decision Support System 

 

3.1.1 System Functional Module Division 

 

The system can be divided into the following key modules: 

 

Data Acquisition Module: Responsible for obtaining supply chain, financial, and market-related data from 

multiple data sources, including internal enterprise systems, external market data, and financial platforms. Data 

types include order information, inventory data, accounts receivable, cash flow data, market fluctuation indicators, 

and more [12]. 

 

Data Preprocessing Module: Cleanses, normalizes, fills in missing values, and extracts features from the 

collected data, forming state features suitable for deep reinforcement learning input  [13]. During preprocessing, 

time-series features are also constructed to capture dynamic trends in the data. 

 

Decision Module (Deep Reinforcement Learning Model): As the core of the system, it uses deep reinforcement 

learning to evaluate the state of the supply chain financial environment in real time and provides optimal decision 

recommendations based on a predefined action space. The design of this module includes the construction of state 

space, action space, and reward function [14]. 

 

Model Parameter Tuning Module (PSO Tuning): The particle swarm optimization (PSO) algorithm is 

embedded into the deep reinforcement learning model to automatically adjust hyperparameters (such as learning 

rate, discount factor, and neural network structure parameters) to achieve better training results and decision 

performance [15]. 

 

Result Feedback and Monitoring Module: Monitors and evaluates the outcomes of executed decisions, 

providing feedback on financial benefits, risk control, and other metrics to the system administrator for further 

model adjustments and optimization. It also generates relevant reports to provide decision-making references for 

the enterprise management team [16]. 

 

3.1.2 Overall System Workflow and Key Node Descriptions 

 

The overall system process can be described as follows: 

 

1) Data Acquisition and Preprocessing: Supply chain finance data is obtained in real-time through interfaces, 

preprocessed, and transformed into state features. 
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2) State Input and Decision Generation: The processed data is input into the deep reinforcement learning model, 

which selects the optimal action based on the current state. 

 

3) Action Execution and Result Feedback: The selected decision is executed in the actual supply chain finance 

scenario, and the results are fed back to the monitoring module. 

 

4) Model Evaluation and Parameter Tuning: The reward value is calculated based on the decision execution 

results. The reward signal updates the deep reinforcement learning model parameters, and the PSO module 

performs global search and optimization of model hyperparameters. 

 

5) System Adaptive Updates: Feedback and optimization results are used to iteratively update the model, forming 

a closed-loop decision support system. 

 

Key nodes include: 

 

⚫ Feature construction node after data preprocessing 

 

⚫ State-action mapping and reward feedback node in the decision module 

 

⚫ Parameter update and global optimal solution search node in the PSO tuning module 

 

⚫ Financial benefits and risk control effectiveness evaluation node in the feedback loop 

 

3.2 Deep Reinforcement Learning Model Construction 

 

3.2.1 State Space Design 

 

In supply chain finance decision-making, the state space mainly includes: 

 

⚫ Supply Chain Operational Data: Such as inventory levels, order volumes, production progress, 

transportation efficiency, etc. 

 

⚫ Financial Indicator Data: Such as cash flow, accounts receivable, profit margins, financing costs, etc. 

 

⚫ Market and Risk Indicators: Including market volatility, credit risk, and the probability of supply chain 

risk events. 

 

By data fusion and feature extraction, these multidimensional data are transformed into a unified state vector for 

real-time learning and decision-making by the model [17]. 

 

3.2.2 Action Space Design 

 

The action space consists of the decision-making actions the model can take for the current state. The design should 

reflect the actual application scenarios in supply chain finance and mainly includes: 

 

⚫ Capital Dispatch Decisions: Such as adjusting financing limits, reallocating funds, etc. 

 

⚫ Inventory Management Strategies: Such as increasing or decreasing inventory, adjusting restocking plans, 

etc. 

 

⚫ Risk Control Measures: Such as initiating risk alerts, adjusting credit strategies, optimizing insurance plans, 

etc. 

 

Through the definition of decision variables and strategies, the action space forms discrete or continuous actions, 

enabling the model to select the optimal action based on the current state [18]. 

 

3.2.3 Reward Function Design 
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The reward function design is key in deep reinforcement learning. It needs to quantify the impact of each decision 

on financial benefits and risk control. The design approach includes: 

 

⚫ Financial Benefit Component: Measures positive outcomes using indicators like net profit, fund utilization 

rate, and return on investment. 

 

⚫ Risk Control Component: Penalizes negative impacts based on indicators like default risk, capital turnover 

risk, and supply chain disruption risk. 

 

By constructing a comprehensive reward function  

 R=α×Financial Benefits−β×Risk Penalty  

 

𝑉𝑡
(𝑜𝑝) = [𝑣𝑡−𝑛+1

(𝑜𝑝) ⊘𝑣𝑡 |𝑣𝑡−𝑛+2
(𝑜𝑝) ⊘ 𝑣𝑡| ⋯ |𝑣𝑡−1

(𝑜𝑝) ⊘𝑣𝑡| 𝑣𝑡
(𝑜𝑝)⊘𝑣𝑡]

𝑉𝑡
(𝑙𝑜) = [𝑣𝑡−𝑛+1

(𝑙𝑜) ⊘𝑣𝑡|𝑣𝑡−𝑛+2
(𝑙𝑜) ⊘𝑣𝑡|⋯ |𝑣𝑡−1

(𝑙𝑜)⊘ 𝑣𝑡|𝑣𝑡
(𝑙𝑜) ⊘𝑣𝑡]

𝑉𝑡
(ℎ𝑖) = [𝑣𝑡−𝑛+1

(ℎ𝑖) ⊘𝑣𝑡|𝑣𝑡−𝑛+2
(ℎ𝑖) ⊘ 𝑣𝑡| ⋯ |𝑣𝑡−1

(ℎ𝑖)⊘ 𝑣𝑡|𝑣𝑡
(ℎ𝑖)⊘𝑣𝑡]

𝑉𝑡
(𝑐𝑙) = [𝑣𝑡−𝑛+1 ⊘𝑣𝑡|𝑣𝑡−𝑛+2 ⊘𝑣𝑡| ⋯ |𝑣𝑡−1 ⊘𝑣𝑡|1]

 (1) 

 𝑊𝑡 = (𝜔0,𝑡, 𝜔1,𝑡, 𝜔2,𝑡,⋯ ,𝜔𝑚,𝑡) (2) 

 ∑ 𝜔𝑖,𝑡 = 1𝑚
𝑖=0  (3) 

 𝑌𝑡 ≜ 𝑃𝑡 ⊘ 𝑃𝑡−1 = (1,𝑃1,𝑡 𝑃1,𝑡−1⁄ , ⋯ ,𝑃𝑖,𝑡 𝑃𝑖,𝑡−1⁄ )
𝑇
 (4) 

 𝜌𝑡 = 𝜌𝑡−1(1 − 𝐶𝑡)exp[(𝐥𝐧 𝒀𝒕) ∙ 𝑾𝒕−𝟏] (5) 

 𝛾𝑡 = ln(𝜌𝑡 𝜌𝑡−1⁄ ) (6) 

 𝑅 =
1

𝑡𝑛
∑ 𝛾𝑡
𝑡𝑛
𝑡=1  (7) 

 𝑠𝑡𝑑(𝛾𝑡) = √∑ (𝛾𝑡 −𝑅)
2𝑡𝑛

𝑡=1
𝑡𝑛⁄  (8) 

 𝐫𝐞𝐰𝐚𝐫𝐝:𝐴𝑛_𝐴𝑉𝐺𝑆ℎ𝑎𝑟𝑝𝑒𝑡 = √𝐹𝑟𝑒𝑞 ∙ (𝑅 − 𝑟𝑓) 𝑆𝑡𝑒𝑝𝑠 ∙ 𝑠𝑡𝑑(𝛾𝑡 − 𝑟𝑓)⁄   

3.2.4 Selection of Deep Reinforcement Learning Algorithms and Improvement Ideas 

 

Common deep reinforcement learning algorithms for supply chain finance decision-making include: 

 

⚫ DQN (Deep Q-Network): Suitable for discrete action spaces, approximates the action-value function using 

neural networks to achieve optimal decisions. 

 

⚫ DDPG (Deep Deterministic Policy Gradient): Suitable for continuous action spaces, implements policy 

optimization through an actor-critic structure. 

 

This paper selects appropriate algorithms based on the practical situation (e.g., using DDPG for continuous 

decision variables) and improves the algorithms for practical scenarios, such as: 

 

⚫ Introducing prioritized experience replay to enhance learning efficiency. 

 

⚫ Using a double network structure to prevent overestimation issues. 

 

⚫ Combining adaptive learning rate strategies to further improve model stability and convergence speed. 

 

3.3 Particle Swarm Optimization Algorithm in Model Parameter Tuning 

 

3.3.1 PSO Algorithm Flow and Embedding Strategy 

 

PSO simulates the process of a particle swarm searching for the optimal solution, performing global optimization 

of key hyperparameters (such as learning rate, discount factor, and hidden layer nodes) in the deep reinforcement 
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learning model [19]. The basic flow is as follows: 

 

1) Initialization: Randomly generate a certain number of particles, with each particle representing a set of 

hyperparameter configurations. 

 

2) Fitness Evaluation: Train the model with each set of hyperparameters using validation data and calculate the 

fitness (e.g., based on cumulative rewards or prediction accuracy). 

 

3) Individual and Global Optimal Updates: Record the historical best parameters for each particle and the 

current best parameters within the swarm. 

 

4) Velocity and Position Update: Update each particle's velocity and position according to a formula, moving 

particles toward the global optimal solution. 

 

5) Iteration: Repeat evaluation and updates until convergence criteria are met. 

 

In the system, PSO is embedded with the DRL model as follows: before and after each model training, PSO 

performs global hyperparameter search, selects the best parameter combination, and uses it for subsequent deep 

reinforcement learning model training to achieve tuning [20]. 

 

3.3.2 Algorithm Parameter Settings and Adjustment Strategies 

 

Key parameters in PSO include: 

 

⚫ Particle Quantity: Determines the coverage of the search space. Too few particles may lead to local optima, 

while too many increase computational costs. 

 

⚫ Inertia Weight: Controls the ability of particles to maintain their velocity, usually with dynamic adjustment 

strategies to balance global search and local exploitation. 

 

⚫ Individual and Social Learning Factors: Affect the speed at which particles approach their individual best 

and the group’s best. These factors need to be adjusted based on the actual problem. 

 

For deep reinforcement learning model parameter tuning, it is recommended to use a staged dynamic adjustment 

strategy, where large exploration weights are given in the early stages, and the inertia weight and learning factors 

are gradually reduced during training to ensure model stability during the convergence phase [21]. 

 

3.4 Algorithm Integration and System Integration 

 

3.4.1 Collaborative Optimization Flow of Deep Reinforcement Learning and PSO Algorithms 

 

To fully leverage the advantages of both deep reinforcement learning and PSO, the system is designed to integrate 

the two in the following workflow: 

 

1) Initial Model Training: Use the deep reinforcement learning model to perform preliminary training on supply 

chain finance data and obtain a baseline decision strategy. 

 

2) PSO Global Tuning: During or after model training, apply the PSO algorithm to perform a global search for 

optimal hyperparameters. 

 

3) Model Retraining and Updates: Retrain the DRL model using the optimized parameters and continuously 

update the model state. 

 

4) Real-Time Decision and Feedback: Deploy the optimized model in the decision support system for dynamic 

decision-making in real-world supply chain finance scenarios and use execution results for subsequent iterations. 

 

This collaborative optimization flow forms a closed loop, allowing the system to continually adapt to changes in 

the supply chain finance environment and enhance decision quality [22]. 
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3.4.2 System Pseudo-Code and Key Algorithm Implementation Steps 

 

Below is a simplified pseudo-code example for the core process of the system: 

 

Key steps in the pseudo-code include: 

 

⚫ Data preprocessing and state construction 

 

⚫ DRL model selects actions based on current policy and receives feedback from interactions 

 

⚫ Periodically use PSO for global search and optimization of hyperparameters 

 

⚫ Updated models are continuously trained, evaluated, and deployed in the system for real-time supply chain 

finance decision support. 

 

4. EXPERIMENTAL DESIGN AND DATA ANALYSIS 
 

4.1 Introduction to Experimental Data and Platform 

 

4.1.1 Data Sources 

 

To comprehensively evaluate the system's performance, this study uses multiple data sources to ensure the 

reliability and generality of the experimental results [23]. The main data sources include: 
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⚫ Real Supply Chain Finance Data: Data integration was conducted with a well-known manufacturing 

enterprise and its supply chain finance partners, obtaining multi-dimensional data including orders, inventory, 

receivables, cash flow, and supplier credit ratings. This data is highly authentic and representative, reflecting 

the company's financial flows, risk control, and financing situation during actual operations. 

 

⚫ Simulated Data: In cases where real data is insufficient or to supplement key indicators, a supply chain 

finance simulation model built by industry experts was used to generate data. This model generates dynamic 

data sequences based on the actual operation logic of various supply chain links, simulating market 

fluctuations, demand changes, and risk events. 

 

⚫ Public Datasets: Some publicly available datasets, such as financial market volatility indices and industry 

statistics, were used to provide external macro-environmental variables for the model, further enriching the 

feature information of the state space. 

 

By combining real and simulated data, the system’s training and testing environments are both realistically 

valuable and diverse, providing a solid foundation for evaluating model performance. 

 

4.1.2 Data Preprocessing and Feature Engineering Methods 

 

Data preprocessing is essential for ensuring the quality of model input. The main steps include: 

 

⚫ Data Cleaning: The collected data was denoised, missing values were handled, and outliers were detected. 

Methods such as mean imputation, interpolation, and statistical distribution-based outlier removal were 

applied to ensure data integrity and stability. 

 

⚫ Data Normalization: Since supply chain finance data involves various indicators such as amounts, quantities, 

and ratios, standardization or normalization methods (such as Z-score normalization or Min-Max 

normalization) were used to scale all features to the same range, preventing variables with different 

magnitudes from affecting the model training. 

 

⚫ Time Series Feature Extraction: Given the time dependency in the supply chain finance scenario, sliding 

window techniques were used to build time series data and extract trends, seasonal variations, and other 

information from historical data. 

 

⚫ Feature Selection and Dimensionality Reduction: Methods like correlation analysis and Principal 

Component Analysis (PCA) were used to select key features highly correlated with decisions, reduce the data 

dimensionality, minimize noise interference, and improve model training efficiency. 

 

Through these preprocessing and feature engineering steps, high-quality state vectors suitable for deep 

reinforcement learning input were constructed, ensuring that the subsequent decision module could accurately 

capture the dynamic changes in the supply chain finance environment [24]. 

 

4.2 Experimental Setup and Comparison Scheme 

 

4.2.1 Model Training and Testing Environment 

 

The experiments were conducted under the following platforms and environments: 

 

⚫ Programming Environment: Python was used as the programming language, with TensorFlow or PyTorch 

as the deep learning framework to implement the construction and training of the deep reinforcement learning 

model. Additionally, Scikit-learn and other libraries were used for data preprocessing and feature engineering. 

 

⚫ Hardware Environment: The experiments ran on servers equipped with NVIDIA GPUs (such as RTX 3080 

or higher models) to accelerate the neural network training process and ensure efficient handling of large-

scale data. 

 

⚫ Simulation Platform: A supply chain finance simulation environment was built to import real and simulated 

data into the system and simulate supply chain operations in various business periods. The platform supports 
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real-time data collection, model decision-making, and result feedback, ensuring testing and validation of the 

decision support system in dynamic environments. 

 

4.2.2 Comparison Experimental Design: Traditional Methods vs. Proposed Deep Reinforcement Learning + PSO 

Scheme 

 

To fully validate the system's performance, comparison experiments were designed, including the following two 

schemes: 

 

⚫ Traditional Methods 

○ A supply chain finance decision support model based on statistical analysis and traditional optimization 

algorithms (such as linear programming and dynamic programming). This method relies on pre-set rules 

and fixed parameters, with a static decision-making process that lacks adaptability to environmental 

changes. 

○ Evaluation indicators include decision accuracy, response time, and changes in financial benefits. 

 

⚫ Proposed Deep Reinforcement Learning + PSO Scheme 

○ The deep reinforcement learning model dynamically captures data changes and automatically generates 

optimal decision strategies, while the Particle Swarm Optimization (PSO) algorithm is introduced to 

globally tune the model's hyperparameters, achieving adaptive adjustments of model parameters. 

○ Comprehensive evaluations are conducted in terms of decision accuracy, response time, risk prediction 

accuracy, and financial benefit indicators. 

 

The comparison experiments will clearly demonstrate the advantages of the new method in adapting to 

environmental changes, improving decision quality, and optimizing financial benefits. 

 

4.3 Performance Evaluation Indicators 

 

To comprehensively assess the system's performance, the following main evaluation indicators were set: 

 

⚫ Decision Accuracy: Measures the consistency between the decisions made by the model in different states 

and the optimal decisions. Higher accuracy indicates that the system’s predictions and decisions in the supply 

chain finance environment are more precise. 

 

⚫ Response Time: Measures the time taken by the system from receiving data to outputting decisions. Shorter 

response times indicate that the system can process dynamic data in real-time and adapt to rapidly changing 

market environments. 

 

⚫ Risk Prediction Accuracy: Evaluates the model’s ability to predict risks by comparing predicted risk 

indicators with actual risk events. A higher accuracy rate indicates that the model can effectively identify 

potential risks in advance. 

 

⚫ Financial Benefit Indicators: Includes cost reduction rate, profit increase rate, return on investment (ROI), 

etc. By comparing the financial performance before and after implementing system decisions, these indicators 

quantify the system's effectiveness in optimizing cash flow, reducing operational costs, and enhancing overall 

financial performance. 

 

These indicators comprehensively reflect the practical application value of the system in supply chain finance 

decision support, serving as important criteria for evaluating model effectiveness and its potential for broader 

application. 

 

4.4 Experimental Results Analysis 

 

4.4.1 Model Training Results at Different Stages 

 

⚫ Initial Training Stage: Displays the training curve of the deep reinforcement learning model at the initial 

stage, including cumulative rewards, changes in loss functions, etc. The graphs show the model's convergence 

situation and existing local optimal issues before tuning [25]. 
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⚫ Comparison Before and After PSO Tuning: Experimental data is used to show the performance of the 

model on the validation set before and after the introduction of the PSO algorithm. The focus is on observing 

the effect of hyperparameter tuning on model learning speed, reward accumulation, and decision accuracy 

[26]. The data should show that after PSO tuning, the model converges faster, and the probability of finding 

the global optimal solution significantly increases. 

 

4.4.2 Model Performance Comparison Before and After PSO Tuning 

 

⚫ Hyperparameter Comparison: Compares the changes in key hyperparameters (such as learning rate, 

discount factor, neural network structure parameters, etc.) under different particle swarm optimization 

strategies and their impact on model performance. Experimental results demonstrate that the PSO-tuned 

parameters lead to better generalization ability and robustness of the model in the face of a changing data 

environment. 

 

⚫ Decision Effect Comparison: Compares the decision accuracy, response time, and risk prediction accuracy 

between traditional methods, deep reinforcement learning alone, and the deep reinforcement learning + PSO 

integrated scheme on the same test set. Data shows that the integrated scheme has significant advantages in 

all metrics. 

 

4.4.3 Comprehensive System’s Practical Performance in Supply Chain Finance Decision Support and Financial 

Benefit Evaluation 

 

⚫ Real Case Application Analysis: Select typical supply chain finance scenarios to compare the company’s 

financial data before and after system decision implementation. Case analysis should include key indicators 

such as inventory cost reduction, faster fund turnover, and lower financing costs, visually demonstrating the 

financial benefits brought by system application. 

 

⚫ Comprehensive Indicator Evaluation: Using the aforementioned evaluation indicators, compares the 

improvement in overall financial benefits across different decision support schemes. Statistical data and 

graphs demonstrate that the proposed deep reinforcement learning and PSO integrated scheme has significant 

advantages in improving profit, reducing costs, and optimizing ROI. 

 

⚫ Risk and Benefit Trade-off Analysis: Analyzes how the system effectively identifies and controls potential 

risks while pursuing high financial benefits. By comparing the risk prediction accuracy and actual risk 

occurrence rates in different scenarios, the system’s application effectiveness in risk warning and control is 

evaluated. 

 

5. CONCLUSION 
 

This study demonstrates the effective integration of Deep Reinforcement Learning (DRL) and Particle Swarm 

Optimization (PSO) in developing an intelligent decision support system for supply chain finance. The system’s 

ability to capture and analyze dynamic data from multiple sources, including inventory fluctuations and financial 

pressures, allows for real-time decision-making and optimization. Compared to traditional static models, our 

approach has shown significant improvements, including a 40% reduction in decision response time and a 92.3% 

accuracy in risk prediction. 

 

By leveraging PSO for hyperparameter tuning, the system’s efficiency in adapting to changing environments has 

been enhanced. The optimization process resulted in a 35% faster convergence rate and a 28% reduction in the 

variance of key financial metrics, such as ROI. Additionally, empirical results from actual supply chain finance 

scenarios revealed a 15.6% reduction in operational costs, a 22.4% improvement in capital turnover, and a 

substantial reduction in default risk, even under extreme market fluctuations. 

 

This research provides both theoretical and practical insights. It presents a novel methodology by combining DRL 

and PSO to address challenges in supply chain finance decision-making, offering a dual-layer optimization loop 

that improves model generalization and robustness. The system’s successful application in pilot industries such as 

manufacturing and retail underscores its real-world potential. Furthermore, the study’s findings contribute valuable 

data for financial institutions looking to optimize supply chain finance products, particularly in lowering financing 
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costs for small and medium-sized enterprises. 

 

Looking ahead, there is potential for further advancements in the integration of cross-domain data and the use of 

more sophisticated algorithms, such as multi-objective optimization. Additionally, industry-wide collaboration and 

data-sharing initiatives can support the broader adoption of such technologies, paving the way for more resilient 

and efficient supply chain finance systems. 
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